ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgfunlem Unicode version

Theorem frecuzrdgfunlem 10490
Description: The recursive definition generator on upper integers produces a a function. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgfunlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frecuzrdgfunlem  |-  ( ph  ->  Fun  ran  R )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, G, y    x, R, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgfunlem
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . . 6  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgrclt 10486 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
7 frn 5412 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
9 xpss 4767 . . . 4  |-  ( (
ZZ>= `  C )  X.  S )  C_  ( _V  X.  _V )
108, 9sstrdi 3191 . . 3  |-  ( ph  ->  ran  R  C_  ( _V  X.  _V ) )
11 df-rel 4666 . . 3  |-  ( Rel 
ran  R  <->  ran  R  C_  ( _V  X.  _V ) )
1210, 11sylibr 134 . 2  |-  ( ph  ->  Rel  ran  R )
13 frecuzrdgfunlem.g . . . . . . . . . 10  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
141, 13frec2uzf1od 10477 . . . . . . . . 9  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
15 f1ocnvdm 5824 . . . . . . . . 9  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
1614, 15sylan 283 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
176ffvelcdmda 5693 . . . . . . . 8  |-  ( (
ph  /\  ( `' G `  v )  e.  om )  ->  ( R `  ( `' G `  v )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
1816, 17syldan 282 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
19 xp2nd 6219 . . . . . . 7  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
2018, 19syl 14 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
21 ffn 5403 . . . . . . . . . 10  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
22 fvelrnb 5604 . . . . . . . . . 10  |-  ( R  Fn  om  ->  ( <. v ,  z >.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
236, 21, 223syl 17 . . . . . . . . 9  |-  ( ph  ->  ( <. v ,  z
>.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
246ffvelcdmda 5693 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  e.  ( ( ZZ>= `  C )  X.  S ) )
25 1st2nd2 6228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R `  w )  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( R `  w )  =  <. ( 1st `  ( R `
 w ) ) ,  ( 2nd `  ( R `  w )
) >. )
2624, 25syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  =  <. ( 1st `  ( R `
 w ) ) ,  ( 2nd `  ( R `  w )
) >. )
271adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  C  e.  ZZ )
282adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  A  e.  S )
293adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  S  C_  T
)
304adantlr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  w  e.  om )  /\  (
x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
31 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  w  e.  om )
3227, 28, 29, 30, 5, 31, 13frecuzrdgg 10487 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  ( 1st `  ( R `  w
) )  =  ( G `  w ) )
3332opeq1d 3810 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  om )  ->  <. ( 1st `  ( R `  w
) ) ,  ( 2nd `  ( R `
 w ) )
>.  =  <. ( G `
 w ) ,  ( 2nd `  ( R `  w )
) >. )
3426, 33eqtrd 2226 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  =  <. ( G `  w ) ,  ( 2nd `  ( R `  w )
) >. )
3534eqeq1d 2202 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>. 
<-> 
<. ( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >. )
)
36 vex 2763 . . . . . . . . . . . . . . . . . 18  |-  v  e. 
_V
37 vex 2763 . . . . . . . . . . . . . . . . . 18  |-  z  e. 
_V
3836, 37opth2 4269 . . . . . . . . . . . . . . . . 17  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  <->  ( ( G `  w )  =  v  /\  ( 2nd `  ( R `  w ) )  =  z ) )
3938simplbi 274 . . . . . . . . . . . . . . . 16  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  ->  ( G `  w )  =  v )
4035, 39biimtrdi 163 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( G `  w )  =  v ) )
41 f1ocnvfv 5822 . . . . . . . . . . . . . . . 16  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  w  e.  om )  ->  ( ( G `
 w )  =  v  ->  ( `' G `  v )  =  w ) )
4214, 41sylan 283 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  om )  ->  ( ( G `  w )  =  v  ->  ( `' G `  v )  =  w ) )
4340, 42syld 45 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( `' G `  v )  =  w ) )
44 fveq2 5554 . . . . . . . . . . . . . . 15  |-  ( ( `' G `  v )  =  w  ->  ( R `  ( `' G `  v )
)  =  ( R `
 w ) )
4544fveq2d 5558 . . . . . . . . . . . . . 14  |-  ( ( `' G `  v )  =  w  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
4643, 45syl6 33 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  ( `' G `  v )
) )  =  ( 2nd `  ( R `
 w ) ) ) )
4746imp 124 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
4836, 37op2ndd 6202 . . . . . . . . . . . . 13  |-  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  w )
)  =  z )
4948adantl 277 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  w
) )  =  z )
5047, 49eqtr2d 2227 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) )
5150ex 115 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
5251rexlimdva 2611 . . . . . . . . 9  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  <. v ,  z >.  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5323, 52sylbid 150 . . . . . . . 8  |-  ( ph  ->  ( <. v ,  z
>.  e.  ran  R  -> 
z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) )
5453alrimiv 1885 . . . . . . 7  |-  ( ph  ->  A. z ( <.
v ,  z >.  e.  ran  R  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5554adantr 276 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A. z
( <. v ,  z
>.  e.  ran  R  -> 
z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) )
56 eqeq2 2203 . . . . . . . . 9  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
z  =  w  <->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
5756imbi2d 230 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
( <. v ,  z
>.  e.  ran  R  -> 
z  =  w )  <-> 
( <. v ,  z
>.  e.  ran  R  -> 
z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
5857albidv 1835 . . . . . . 7  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  ( A. z ( <. v ,  z >.  e.  ran  R  ->  z  =  w )  <->  A. z ( <.
v ,  z >.  e.  ran  R  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) ) )
5958spcegv 2848 . . . . . 6  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( A. z ( <. v ,  z >.  e.  ran  R  ->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) )  ->  E. w A. z ( <. v ,  z >.  e.  ran  R  ->  z  =  w ) ) )
6020, 55, 59sylc 62 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E. w A. z ( <. v ,  z >.  e.  ran  R  ->  z  =  w ) )
61 nfv 1539 . . . . . 6  |-  F/ w <. v ,  z >.  e.  ran  R
6261mo2r 2094 . . . . 5  |-  ( E. w A. z (
<. v ,  z >.  e.  ran  R  ->  z  =  w )  ->  E* z <. v ,  z
>.  e.  ran  R )
6360, 62syl 14 . . . 4  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E* z <. v ,  z >.  e.  ran  R )
641, 2, 3, 4, 5frecuzrdgdom 10489 . . . . . 6  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
6564eleq2d 2263 . . . . 5  |-  ( ph  ->  ( v  e.  dom  ran 
R  <->  v  e.  (
ZZ>= `  C ) ) )
6665pm5.32i 454 . . . 4  |-  ( (
ph  /\  v  e.  dom  ran  R )  <->  ( ph  /\  v  e.  ( ZZ>= `  C ) ) )
67 df-br 4030 . . . . 5  |-  ( v ran  R  z  <->  <. v ,  z >.  e.  ran  R )
6867mobii 2079 . . . 4  |-  ( E* z  v ran  R  z 
<->  E* z <. v ,  z >.  e.  ran  R )
6963, 66, 683imtr4i 201 . . 3  |-  ( (
ph  /\  v  e.  dom  ran  R )  ->  E* z  v ran  R  z )
7069ralrimiva 2567 . 2  |-  ( ph  ->  A. v  e.  dom  ran 
R E* z  v ran  R  z )
71 dffun7 5281 . 2  |-  ( Fun 
ran  R  <->  ( Rel  ran  R  /\  A. v  e. 
dom  ran  R E* z 
v ran  R  z
) )
7212, 70, 71sylanbrc 417 1  |-  ( ph  ->  Fun  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E*wmo 2043    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760    C_ wss 3153   <.cop 3621   class class class wbr 4029    |-> cmpt 4090   omcom 4622    X. cxp 4657   `'ccnv 4658   dom cdm 4659   ran crn 4660   Rel wrel 4664   Fun wfun 5248    Fn wfn 5249   -->wf 5250   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192  freccfrec 6443   1c1 7873    + caddc 7875   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  frecuzrdgfun  10491
  Copyright terms: Public domain W3C validator