ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moi2 Unicode version

Theorem moi2 2911
Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.)
Hypothesis
Ref Expression
moi2.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
moi2  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ( ph  /\  ps ) )  ->  x  =  A )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem moi2
StepHypRef Expression
1 moi2.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21mob2 2910 . . . 4  |-  ( ( A  e.  B  /\  E* x ph  /\  ph )  ->  ( x  =  A  <->  ps ) )
323expa 1198 . . 3  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ph )  ->  (
x  =  A  <->  ps )
)
43biimprd 157 . 2  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ph )  ->  ( ps  ->  x  =  A ) )
54impr 377 1  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ( ph  /\  ps ) )  ->  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E*wmo 2020    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  fsum3  11350  fprodseq  11546  txcn  13069
  Copyright terms: Public domain W3C validator