ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moi2 Unicode version

Theorem moi2 2953
Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.)
Hypothesis
Ref Expression
moi2.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
moi2  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ( ph  /\  ps ) )  ->  x  =  A )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem moi2
StepHypRef Expression
1 moi2.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21mob2 2952 . . . 4  |-  ( ( A  e.  B  /\  E* x ph  /\  ph )  ->  ( x  =  A  <->  ps ) )
323expa 1205 . . 3  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ph )  ->  (
x  =  A  <->  ps )
)
43biimprd 158 . 2  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ph )  ->  ( ps  ->  x  =  A ) )
54impr 379 1  |-  ( ( ( A  e.  B  /\  E* x ph )  /\  ( ph  /\  ps ) )  ->  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E*wmo 2054    e. wcel 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  fsum3  11669  fprodseq  11865  txcn  14718
  Copyright terms: Public domain W3C validator