| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | Unicode version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 |
|
| Ref | Expression |
|---|---|
| impr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2635 moi2 2984 preq12bg 3851 ordsuc 4655 f1ocnv2d 6216 supisoti 7185 caucvgsrlemoffres 7995 prodge0 9009 un0addcl 9410 un0mulcl 9411 peano2uz2 9562 elfz2nn0 10316 fzind2 10453 expaddzap 10813 expmulzap 10815 swrdswrd 11245 cau3lem 11633 climuni 11812 climrecvg1n 11867 fisumcom2 11957 fprodcom2fi 12145 dvdsval2 12309 algcvga 12581 lcmgcdlem 12607 divgcdcoprmex 12632 prmpwdvds 12886 isgrpinv 13595 dvdsrcl2 14071 islss4 14354 lspsnel6 14380 epttop 14772 cncnp 14912 cnconst 14916 bl2in 15085 metcnpi 15197 metcnpi2 15198 metcnpi3 15199 perfect 15683 lgsquad2 15770 |
| Copyright terms: Public domain | W3C validator |