| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | Unicode version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 |
|
| Ref | Expression |
|---|---|
| impr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2615 moi2 2964 preq12bg 3830 ordsuc 4632 f1ocnv2d 6180 supisoti 7145 caucvgsrlemoffres 7955 prodge0 8969 un0addcl 9370 un0mulcl 9371 peano2uz2 9522 elfz2nn0 10276 fzind2 10412 expaddzap 10772 expmulzap 10774 swrdswrd 11203 cau3lem 11591 climuni 11770 climrecvg1n 11825 fisumcom2 11915 fprodcom2fi 12103 dvdsval2 12267 algcvga 12539 lcmgcdlem 12565 divgcdcoprmex 12590 prmpwdvds 12844 isgrpinv 13553 dvdsrcl2 14028 islss4 14311 lspsnel6 14337 epttop 14729 cncnp 14869 cnconst 14873 bl2in 15042 metcnpi 15154 metcnpi2 15155 metcnpi3 15156 perfect 15640 lgsquad2 15727 |
| Copyright terms: Public domain | W3C validator |