| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impr | Unicode version | ||
| Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| impr.1 |
|
| Ref | Expression |
|---|---|
| impr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impr.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | imp32 257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: reximddv2 2602 moi2 2945 preq12bg 3804 ordsuc 4600 f1ocnv2d 6131 supisoti 7085 caucvgsrlemoffres 7884 prodge0 8898 un0addcl 9299 un0mulcl 9300 peano2uz2 9450 elfz2nn0 10204 fzind2 10332 expaddzap 10692 expmulzap 10694 cau3lem 11296 climuni 11475 climrecvg1n 11530 fisumcom2 11620 fprodcom2fi 11808 dvdsval2 11972 algcvga 12244 lcmgcdlem 12270 divgcdcoprmex 12295 prmpwdvds 12549 isgrpinv 13256 dvdsrcl2 13731 islss4 14014 lspsnel6 14040 epttop 14410 cncnp 14550 cnconst 14554 bl2in 14723 metcnpi 14835 metcnpi2 14836 metcnpi3 14837 perfect 15321 lgsquad2 15408 |
| Copyright terms: Public domain | W3C validator |