| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moi2 | GIF version | ||
| Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.) |
| Ref | Expression |
|---|---|
| moi2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| moi2 | ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moi2.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | mob2 2963 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |
| 3 | 2 | 3expa 1208 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |
| 4 | 3 | biimprd 158 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝜓 → 𝑥 = 𝐴)) |
| 5 | 4 | impr 379 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∃*wmo 2058 ∈ wcel 2180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 |
| This theorem is referenced by: fsum3 11864 fprodseq 12060 txcn 14914 |
| Copyright terms: Public domain | W3C validator |