Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moi2 | GIF version |
Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.) |
Ref | Expression |
---|---|
moi2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
moi2 | ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moi2.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | mob2 2906 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |
3 | 2 | 3expa 1193 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |
4 | 3 | biimprd 157 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝜓 → 𝑥 = 𝐴)) |
5 | 4 | impr 377 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃*wmo 2015 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: fsum3 11328 fprodseq 11524 txcn 12915 |
Copyright terms: Public domain | W3C validator |