ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moi2 GIF version

Theorem moi2 2955
Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.)
Hypothesis
Ref Expression
moi2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
moi2 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑𝜓)) → 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem moi2
StepHypRef Expression
1 moi2.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21mob2 2954 . . . 4 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
323expa 1206 . . 3 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝑥 = 𝐴𝜓))
43biimprd 158 . 2 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝜓𝑥 = 𝐴))
54impr 379 1 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑𝜓)) → 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  ∃*wmo 2056  wcel 2177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775
This theorem is referenced by:  fsum3  11742  fprodseq  11938  txcn  14791
  Copyright terms: Public domain W3C validator