Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiinbas | Unicode version |
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fiinbas |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3173 | . . . . . . . 8 | |
2 | eleq2 2239 | . . . . . . . . . 10 | |
3 | sseq1 3176 | . . . . . . . . . 10 | |
4 | 2, 3 | anbi12d 473 | . . . . . . . . 9 |
5 | 4 | rspcev 2839 | . . . . . . . 8 |
6 | 1, 5 | mpanr2 438 | . . . . . . 7 |
7 | 6 | ralrimiva 2548 | . . . . . 6 |
8 | 7 | a1i 9 | . . . . 5 |
9 | 8 | ralimdv 2543 | . . . 4 |
10 | 9 | ralimdv 2543 | . . 3 |
11 | isbasis2g 13094 | . . 3 | |
12 | 10, 11 | sylibrd 169 | . 2 |
13 | 12 | imp 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wral 2453 wrex 2454 cin 3126 wss 3127 ctb 13091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-uni 3806 df-bases 13092 |
This theorem is referenced by: qtopbasss 13572 |
Copyright terms: Public domain | W3C validator |