ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinbas Unicode version

Theorem fiinbas 12687
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fiinbas  |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
Distinct variable groups:    x, B, y   
x, C, y

Proof of Theorem fiinbas
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3162 . . . . . . . 8  |-  ( x  i^i  y )  C_  ( x  i^i  y
)
2 eleq2 2230 . . . . . . . . . 10  |-  ( w  =  ( x  i^i  y )  ->  (
z  e.  w  <->  z  e.  ( x  i^i  y
) ) )
3 sseq1 3165 . . . . . . . . . 10  |-  ( w  =  ( x  i^i  y )  ->  (
w  C_  ( x  i^i  y )  <->  ( x  i^i  y )  C_  (
x  i^i  y )
) )
42, 3anbi12d 465 . . . . . . . . 9  |-  ( w  =  ( x  i^i  y )  ->  (
( z  e.  w  /\  w  C_  ( x  i^i  y ) )  <-> 
( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) ) )
54rspcev 2830 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  e.  B  /\  ( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
61, 5mpanr2 435 . . . . . . 7  |-  ( ( ( x  i^i  y
)  e.  B  /\  z  e.  ( x  i^i  y ) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
76ralrimiva 2539 . . . . . 6  |-  ( ( x  i^i  y )  e.  B  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
87a1i 9 . . . . 5  |-  ( B  e.  C  ->  (
( x  i^i  y
)  e.  B  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
98ralimdv 2534 . . . 4  |-  ( B  e.  C  ->  ( A. y  e.  B  ( x  i^i  y
)  e.  B  ->  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
109ralimdv 2534 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  e.  B  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
11 isbasis2g 12683 . . 3  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
1210, 11sylibrd 168 . 2  |-  ( B  e.  C  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  e.  B  ->  B  e.  TopBases ) )
1312imp 123 1  |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    i^i cin 3115    C_ wss 3116   TopBasesctb 12680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-bases 12681
This theorem is referenced by:  qtopbasss  13161
  Copyright terms: Public domain W3C validator