ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinbas Unicode version

Theorem fiinbas 13776
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fiinbas  |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
Distinct variable groups:    x, B, y   
x, C, y

Proof of Theorem fiinbas
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3187 . . . . . . . 8  |-  ( x  i^i  y )  C_  ( x  i^i  y
)
2 eleq2 2251 . . . . . . . . . 10  |-  ( w  =  ( x  i^i  y )  ->  (
z  e.  w  <->  z  e.  ( x  i^i  y
) ) )
3 sseq1 3190 . . . . . . . . . 10  |-  ( w  =  ( x  i^i  y )  ->  (
w  C_  ( x  i^i  y )  <->  ( x  i^i  y )  C_  (
x  i^i  y )
) )
42, 3anbi12d 473 . . . . . . . . 9  |-  ( w  =  ( x  i^i  y )  ->  (
( z  e.  w  /\  w  C_  ( x  i^i  y ) )  <-> 
( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) ) )
54rspcev 2853 . . . . . . . 8  |-  ( ( ( x  i^i  y
)  e.  B  /\  ( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
61, 5mpanr2 438 . . . . . . 7  |-  ( ( ( x  i^i  y
)  e.  B  /\  z  e.  ( x  i^i  y ) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
76ralrimiva 2560 . . . . . 6  |-  ( ( x  i^i  y )  e.  B  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
87a1i 9 . . . . 5  |-  ( B  e.  C  ->  (
( x  i^i  y
)  e.  B  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
98ralimdv 2555 . . . 4  |-  ( B  e.  C  ->  ( A. y  e.  B  ( x  i^i  y
)  e.  B  ->  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
109ralimdv 2555 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  e.  B  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
11 isbasis2g 13772 . . 3  |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
1210, 11sylibrd 169 . 2  |-  ( B  e.  C  ->  ( A. x  e.  B  A. y  e.  B  ( x  i^i  y
)  e.  B  ->  B  e.  TopBases ) )
1312imp 124 1  |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  (
x  i^i  y )  e.  B )  ->  B  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466    i^i cin 3140    C_ wss 3141   TopBasesctb 13769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-in 3147  df-ss 3154  df-pw 3589  df-uni 3822  df-bases 13770
This theorem is referenced by:  qtopbasss  14248
  Copyright terms: Public domain W3C validator