Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiinbas | Unicode version |
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fiinbas |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . . . . . . . 8 | |
2 | eleq2 2230 | . . . . . . . . . 10 | |
3 | sseq1 3165 | . . . . . . . . . 10 | |
4 | 2, 3 | anbi12d 465 | . . . . . . . . 9 |
5 | 4 | rspcev 2830 | . . . . . . . 8 |
6 | 1, 5 | mpanr2 435 | . . . . . . 7 |
7 | 6 | ralrimiva 2539 | . . . . . 6 |
8 | 7 | a1i 9 | . . . . 5 |
9 | 8 | ralimdv 2534 | . . . 4 |
10 | 9 | ralimdv 2534 | . . 3 |
11 | isbasis2g 12683 | . . 3 | |
12 | 10, 11 | sylibrd 168 | . 2 |
13 | 12 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 ctb 12680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-uni 3790 df-bases 12681 |
This theorem is referenced by: qtopbasss 13161 |
Copyright terms: Public domain | W3C validator |