Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiinbas | Unicode version |
Description: If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
fiinbas |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . . . . . . . 8 | |
2 | eleq2 2234 | . . . . . . . . . 10 | |
3 | sseq1 3170 | . . . . . . . . . 10 | |
4 | 2, 3 | anbi12d 470 | . . . . . . . . 9 |
5 | 4 | rspcev 2834 | . . . . . . . 8 |
6 | 1, 5 | mpanr2 436 | . . . . . . 7 |
7 | 6 | ralrimiva 2543 | . . . . . 6 |
8 | 7 | a1i 9 | . . . . 5 |
9 | 8 | ralimdv 2538 | . . . 4 |
10 | 9 | ralimdv 2538 | . . 3 |
11 | isbasis2g 12837 | . . 3 | |
12 | 10, 11 | sylibrd 168 | . 2 |
13 | 12 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 cin 3120 wss 3121 ctb 12834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 df-bases 12835 |
This theorem is referenced by: qtopbasss 13315 |
Copyright terms: Public domain | W3C validator |