ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmresg Unicode version

Theorem pmresg 6570
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )

Proof of Theorem pmresg
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6545 . . . 4  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl1 5969 . . 3  |-  ( F  e.  ( A  ^pm  C )  ->  A  e.  _V )
32adantl 275 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  A  e.  _V )
4 simpl 108 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  B  e.  V )
5 elpmi 6561 . . . . . 6  |-  ( F  e.  ( A  ^pm  C )  ->  ( F : dom  F --> A  /\  dom  F  C_  C )
)
65simpld 111 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  F : dom  F --> A )
76adantl 275 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  F : dom  F --> A )
8 inss1 3296 . . . 4  |-  ( dom 
F  i^i  B )  C_ 
dom  F
9 fssres 5298 . . . 4  |-  ( ( F : dom  F --> A  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> A )
107, 8, 9sylancl 409 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> A )
11 ffun 5275 . . . . 5  |-  ( F : dom  F --> A  ->  Fun  F )
12 resres 4831 . . . . . 6  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
13 funrel 5140 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
14 resdm 4858 . . . . . . 7  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
15 reseq1 4813 . . . . . . 7  |-  ( ( F  |`  dom  F )  =  F  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
1613, 14, 153syl 17 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  B )
)
1712, 16syl5eqr 2186 . . . . 5  |-  ( Fun 
F  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B )
)
187, 11, 173syl 17 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
1918feq1d 5259 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( ( F  |`  ( dom  F  i^i  B
) ) : ( dom  F  i^i  B
) --> A  <->  ( F  |`  B ) : ( dom  F  i^i  B
) --> A ) )
2010, 19mpbid 146 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B ) : ( dom  F  i^i  B ) --> A )
21 inss2 3297 . . 3  |-  ( dom 
F  i^i  B )  C_  B
22 elpm2r 6560 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( ( F  |`  B ) : ( dom  F  i^i  B
) --> A  /\  ( dom  F  i^i  B ) 
C_  B ) )  ->  ( F  |`  B )  e.  ( A  ^pm  B )
)
2321, 22mpanr2 434 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( F  |`  B ) : ( dom  F  i^i  B
) --> A )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
243, 4, 20, 23syl21anc 1215 1  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {crab 2420   _Vcvv 2686    i^i cin 3070    C_ wss 3071   ~Pcpw 3510    X. cxp 4537   dom cdm 4539    |` cres 4541   Rel wrel 4544   Fun wfun 5117   -->wf 5119  (class class class)co 5774    ^pm cpm 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pm 6545
This theorem is referenced by:  lmres  12417
  Copyright terms: Public domain W3C validator