ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmresg Unicode version

Theorem pmresg 6781
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )

Proof of Theorem pmresg
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6756 . . . 4  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl1 6160 . . 3  |-  ( F  e.  ( A  ^pm  C )  ->  A  e.  _V )
32adantl 277 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  A  e.  _V )
4 simpl 109 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  B  e.  V )
5 elpmi 6772 . . . . . 6  |-  ( F  e.  ( A  ^pm  C )  ->  ( F : dom  F --> A  /\  dom  F  C_  C )
)
65simpld 112 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  F : dom  F --> A )
76adantl 277 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  F : dom  F --> A )
8 inss1 3397 . . . 4  |-  ( dom 
F  i^i  B )  C_ 
dom  F
9 fssres 5468 . . . 4  |-  ( ( F : dom  F --> A  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> A )
107, 8, 9sylancl 413 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> A )
11 ffun 5443 . . . . 5  |-  ( F : dom  F --> A  ->  Fun  F )
12 resres 4985 . . . . . 6  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
13 funrel 5302 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
14 resdm 5012 . . . . . . 7  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
15 reseq1 4967 . . . . . . 7  |-  ( ( F  |`  dom  F )  =  F  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
1613, 14, 153syl 17 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  B )
)
1712, 16eqtr3id 2253 . . . . 5  |-  ( Fun 
F  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B )
)
187, 11, 173syl 17 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
1918feq1d 5427 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( ( F  |`  ( dom  F  i^i  B
) ) : ( dom  F  i^i  B
) --> A  <->  ( F  |`  B ) : ( dom  F  i^i  B
) --> A ) )
2010, 19mpbid 147 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B ) : ( dom  F  i^i  B ) --> A )
21 inss2 3398 . . 3  |-  ( dom 
F  i^i  B )  C_  B
22 elpm2r 6771 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( ( F  |`  B ) : ( dom  F  i^i  B
) --> A  /\  ( dom  F  i^i  B ) 
C_  B ) )  ->  ( F  |`  B )  e.  ( A  ^pm  B )
)
2321, 22mpanr2 438 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( F  |`  B ) : ( dom  F  i^i  B
) --> A )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
243, 4, 20, 23syl21anc 1249 1  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {crab 2489   _Vcvv 2773    i^i cin 3169    C_ wss 3170   ~Pcpw 3621    X. cxp 4686   dom cdm 4688    |` cres 4690   Rel wrel 4693   Fun wfun 5279   -->wf 5281  (class class class)co 5962    ^pm cpm 6754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pm 6756
This theorem is referenced by:  lmres  14805
  Copyright terms: Public domain W3C validator