| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmresg | Unicode version | ||
| Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| pmresg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pm 6796 |
. . . 4
| |
| 2 | 1 | elmpocl1 6200 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | simpl 109 |
. 2
| |
| 5 | elpmi 6812 |
. . . . . 6
| |
| 6 | 5 | simpld 112 |
. . . . 5
|
| 7 | 6 | adantl 277 |
. . . 4
|
| 8 | inss1 3424 |
. . . 4
| |
| 9 | fssres 5500 |
. . . 4
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . 3
|
| 11 | ffun 5475 |
. . . . 5
| |
| 12 | resres 5016 |
. . . . . 6
| |
| 13 | funrel 5334 |
. . . . . . 7
| |
| 14 | resdm 5043 |
. . . . . . 7
| |
| 15 | reseq1 4998 |
. . . . . . 7
| |
| 16 | 13, 14, 15 | 3syl 17 |
. . . . . 6
|
| 17 | 12, 16 | eqtr3id 2276 |
. . . . 5
|
| 18 | 7, 11, 17 | 3syl 17 |
. . . 4
|
| 19 | 18 | feq1d 5459 |
. . 3
|
| 20 | 10, 19 | mpbid 147 |
. 2
|
| 21 | inss2 3425 |
. . 3
| |
| 22 | elpm2r 6811 |
. . 3
| |
| 23 | 21, 22 | mpanr2 438 |
. 2
|
| 24 | 3, 4, 20, 23 | syl21anc 1270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pm 6796 |
| This theorem is referenced by: lmres 14916 |
| Copyright terms: Public domain | W3C validator |