ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pmresg Unicode version

Theorem pmresg 6763
Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmresg  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )

Proof of Theorem pmresg
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pm 6738 . . . 4  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
21elmpocl1 6142 . . 3  |-  ( F  e.  ( A  ^pm  C )  ->  A  e.  _V )
32adantl 277 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  A  e.  _V )
4 simpl 109 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  B  e.  V )
5 elpmi 6754 . . . . . 6  |-  ( F  e.  ( A  ^pm  C )  ->  ( F : dom  F --> A  /\  dom  F  C_  C )
)
65simpld 112 . . . . 5  |-  ( F  e.  ( A  ^pm  C )  ->  F : dom  F --> A )
76adantl 277 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  ->  F : dom  F --> A )
8 inss1 3393 . . . 4  |-  ( dom 
F  i^i  B )  C_ 
dom  F
9 fssres 5451 . . . 4  |-  ( ( F : dom  F --> A  /\  ( dom  F  i^i  B )  C_  dom  F )  ->  ( F  |`  ( dom  F  i^i  B ) ) : ( dom  F  i^i  B
) --> A )
107, 8, 9sylancl 413 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) ) : ( dom 
F  i^i  B ) --> A )
11 ffun 5428 . . . . 5  |-  ( F : dom  F --> A  ->  Fun  F )
12 resres 4971 . . . . . 6  |-  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  ( dom  F  i^i  B ) )
13 funrel 5288 . . . . . . 7  |-  ( Fun 
F  ->  Rel  F )
14 resdm 4998 . . . . . . 7  |-  ( Rel 
F  ->  ( F  |` 
dom  F )  =  F )
15 reseq1 4953 . . . . . . 7  |-  ( ( F  |`  dom  F )  =  F  ->  (
( F  |`  dom  F
)  |`  B )  =  ( F  |`  B ) )
1613, 14, 153syl 17 . . . . . 6  |-  ( Fun 
F  ->  ( ( F  |`  dom  F )  |`  B )  =  ( F  |`  B )
)
1712, 16eqtr3id 2252 . . . . 5  |-  ( Fun 
F  ->  ( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B )
)
187, 11, 173syl 17 . . . 4  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  ( dom  F  i^i  B ) )  =  ( F  |`  B ) )
1918feq1d 5412 . . 3  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( ( F  |`  ( dom  F  i^i  B
) ) : ( dom  F  i^i  B
) --> A  <->  ( F  |`  B ) : ( dom  F  i^i  B
) --> A ) )
2010, 19mpbid 147 . 2  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B ) : ( dom  F  i^i  B ) --> A )
21 inss2 3394 . . 3  |-  ( dom 
F  i^i  B )  C_  B
22 elpm2r 6753 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( ( F  |`  B ) : ( dom  F  i^i  B
) --> A  /\  ( dom  F  i^i  B ) 
C_  B ) )  ->  ( F  |`  B )  e.  ( A  ^pm  B )
)
2321, 22mpanr2 438 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  V )  /\  ( F  |`  B ) : ( dom  F  i^i  B
) --> A )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
243, 4, 20, 23syl21anc 1249 1  |-  ( ( B  e.  V  /\  F  e.  ( A  ^pm  C ) )  -> 
( F  |`  B )  e.  ( A  ^pm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772    i^i cin 3165    C_ wss 3166   ~Pcpw 3616    X. cxp 4673   dom cdm 4675    |` cres 4677   Rel wrel 4680   Fun wfun 5265   -->wf 5267  (class class class)co 5944    ^pm cpm 6736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pm 6738
This theorem is referenced by:  lmres  14720
  Copyright terms: Public domain W3C validator