| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pmresg | Unicode version | ||
| Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
| Ref | Expression |
|---|---|
| pmresg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pm 6738 |
. . . 4
| |
| 2 | 1 | elmpocl1 6142 |
. . 3
|
| 3 | 2 | adantl 277 |
. 2
|
| 4 | simpl 109 |
. 2
| |
| 5 | elpmi 6754 |
. . . . . 6
| |
| 6 | 5 | simpld 112 |
. . . . 5
|
| 7 | 6 | adantl 277 |
. . . 4
|
| 8 | inss1 3393 |
. . . 4
| |
| 9 | fssres 5451 |
. . . 4
| |
| 10 | 7, 8, 9 | sylancl 413 |
. . 3
|
| 11 | ffun 5428 |
. . . . 5
| |
| 12 | resres 4971 |
. . . . . 6
| |
| 13 | funrel 5288 |
. . . . . . 7
| |
| 14 | resdm 4998 |
. . . . . . 7
| |
| 15 | reseq1 4953 |
. . . . . . 7
| |
| 16 | 13, 14, 15 | 3syl 17 |
. . . . . 6
|
| 17 | 12, 16 | eqtr3id 2252 |
. . . . 5
|
| 18 | 7, 11, 17 | 3syl 17 |
. . . 4
|
| 19 | 18 | feq1d 5412 |
. . 3
|
| 20 | 10, 19 | mpbid 147 |
. 2
|
| 21 | inss2 3394 |
. . 3
| |
| 22 | elpm2r 6753 |
. . 3
| |
| 23 | 21, 22 | mpanr2 438 |
. 2
|
| 24 | 3, 4, 20, 23 | syl21anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pm 6738 |
| This theorem is referenced by: lmres 14720 |
| Copyright terms: Public domain | W3C validator |