ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssec Unicode version

Theorem blssec 13193
Description: A ball centered at  P is contained in the set of points finitely separated from  P. This is just an application of ssbl 13181 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1  |-  .~  =  ( `' D " RR )
Assertion
Ref Expression
blssec  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S ) 
C_  [ P ]  .~  )

Proof of Theorem blssec
StepHypRef Expression
1 pnfge 9735 . . . . 5  |-  ( S  e.  RR*  ->  S  <_ +oo )
21adantl 275 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  S  <_ +oo )
3 pnfxr 7961 . . . . 5  |- +oo  e.  RR*
4 ssbl 13181 . . . . . 6  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( S  e.  RR*  /\ +oo  e.  RR* )  /\  S  <_ +oo )  ->  ( P ( ball `  D
) S )  C_  ( P ( ball `  D
) +oo ) )
543expia 1200 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  ( S  e.  RR*  /\ +oo  e.  RR* ) )  -> 
( S  <_ +oo  ->  ( P ( ball `  D
) S )  C_  ( P ( ball `  D
) +oo ) ) )
63, 5mpanr2 436 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  ( S  <_ +oo  ->  ( P ( ball `  D
) S )  C_  ( P ( ball `  D
) +oo ) ) )
72, 6mpd 13 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  S  e.  RR* )  ->  ( P ( ball `  D
) S )  C_  ( P ( ball `  D
) +oo ) )
873impa 1189 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S ) 
C_  ( P (
ball `  D ) +oo ) )
9 xmeter.1 . . . 4  |-  .~  =  ( `' D " RR )
109xmetec 13192 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  [ P ]  .~  =  ( P ( ball `  D
) +oo ) )
11103adant3 1012 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  [ P ]  .~  =  ( P (
ball `  D ) +oo ) )
128, 11sseqtrrd 3186 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  S  e.  RR* )  ->  ( P ( ball `  D ) S ) 
C_  [ P ]  .~  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141    C_ wss 3121   class class class wbr 3987   `'ccnv 4608   "cima 4612   ` cfv 5196  (class class class)co 5851   [cec 6508   RRcr 7762   +oocpnf 7940   RR*cxr 7942    <_ cle 7944   *Metcxmet 12735   ballcbl 12737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-ec 6512  df-map 6625  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-2 8926  df-xneg 9718  df-xadd 9719  df-psmet 12742  df-xmet 12743  df-bl 12745
This theorem is referenced by:  xmetresbl  13195
  Copyright terms: Public domain W3C validator