ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1steq Unicode version

Theorem op1steq 6158
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq  |-  ( A  e.  ( V  X.  W )  ->  (
( 1st `  A
)  =  B  <->  E. x  A  =  <. B ,  x >. ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 4719 . . 3  |-  ( V  X.  W )  C_  ( _V  X.  _V )
21sseli 3143 . 2  |-  ( A  e.  ( V  X.  W )  ->  A  e.  ( _V  X.  _V ) )
3 eqid 2170 . . . . . 6  |-  ( 2nd `  A )  =  ( 2nd `  A )
4 eqopi 6151 . . . . . 6  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  ( 2nd `  A
) ) )  ->  A  =  <. B , 
( 2nd `  A
) >. )
53, 4mpanr2 436 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  A  =  <. B ,  ( 2nd `  A )
>. )
6 2ndexg 6147 . . . . . . 7  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  e.  _V )
7 opeq2 3766 . . . . . . . . 9  |-  ( x  =  ( 2nd `  A
)  ->  <. B ,  x >.  =  <. B , 
( 2nd `  A
) >. )
87eqeq2d 2182 . . . . . . . 8  |-  ( x  =  ( 2nd `  A
)  ->  ( A  =  <. B ,  x >.  <-> 
A  =  <. B , 
( 2nd `  A
) >. ) )
98spcegv 2818 . . . . . . 7  |-  ( ( 2nd `  A )  e.  _V  ->  ( A  =  <. B , 
( 2nd `  A
) >.  ->  E. x  A  =  <. B ,  x >. ) )
106, 9syl 14 . . . . . 6  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  ( 2nd `  A )
>.  ->  E. x  A  = 
<. B ,  x >. ) )
1110adantr 274 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  ( A  =  <. B , 
( 2nd `  A
) >.  ->  E. x  A  =  <. B ,  x >. ) )
125, 11mpd 13 . . . 4  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  E. x  A  =  <. B ,  x >. )
1312ex 114 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  B  ->  E. x  A  =  <. B ,  x >. ) )
14 eqop 6156 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  x >.  <-> 
( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  x ) ) )
15 simpl 108 . . . . 5  |-  ( ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  x )  -> 
( 1st `  A
)  =  B )
1614, 15syl6bi 162 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  x >.  ->  ( 1st `  A
)  =  B ) )
1716exlimdv 1812 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( E. x  A  =  <. B ,  x >.  ->  ( 1st `  A )  =  B ) )
1813, 17impbid 128 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
192, 18syl 14 1  |-  ( A  e.  ( V  X.  W )  ->  (
( 1st `  A
)  =  B  <->  E. x  A  =  <. B ,  x >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   <.cop 3586    X. cxp 4609   ` cfv 5198   1stc1st 6117   2ndc2nd 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  releldm2  6164
  Copyright terms: Public domain W3C validator