| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op1steq | Unicode version | ||
| Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| op1steq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 4827 |
. . 3
| |
| 2 | 1 | sseli 3220 |
. 2
|
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | eqopi 6318 |
. . . . . 6
| |
| 5 | 3, 4 | mpanr2 438 |
. . . . 5
|
| 6 | 2ndexg 6314 |
. . . . . . 7
| |
| 7 | opeq2 3858 |
. . . . . . . . 9
| |
| 8 | 7 | eqeq2d 2241 |
. . . . . . . 8
|
| 9 | 8 | spcegv 2891 |
. . . . . . 7
|
| 10 | 6, 9 | syl 14 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | 5, 11 | mpd 13 |
. . . 4
|
| 13 | 12 | ex 115 |
. . 3
|
| 14 | eqop 6323 |
. . . . 5
| |
| 15 | simpl 109 |
. . . . 5
| |
| 16 | 14, 15 | biimtrdi 163 |
. . . 4
|
| 17 | 16 | exlimdv 1865 |
. . 3
|
| 18 | 13, 17 | impbid 129 |
. 2
|
| 19 | 2, 18 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-1st 6286 df-2nd 6287 |
| This theorem is referenced by: releldm2 6331 |
| Copyright terms: Public domain | W3C validator |