| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > op1steq | Unicode version | ||
| Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| op1steq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpss 4771 | 
. . 3
 | |
| 2 | 1 | sseli 3179 | 
. 2
 | 
| 3 | eqid 2196 | 
. . . . . 6
 | |
| 4 | eqopi 6230 | 
. . . . . 6
 | |
| 5 | 3, 4 | mpanr2 438 | 
. . . . 5
 | 
| 6 | 2ndexg 6226 | 
. . . . . . 7
 | |
| 7 | opeq2 3809 | 
. . . . . . . . 9
 | |
| 8 | 7 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 9 | 8 | spcegv 2852 | 
. . . . . . 7
 | 
| 10 | 6, 9 | syl 14 | 
. . . . . 6
 | 
| 11 | 10 | adantr 276 | 
. . . . 5
 | 
| 12 | 5, 11 | mpd 13 | 
. . . 4
 | 
| 13 | 12 | ex 115 | 
. . 3
 | 
| 14 | eqop 6235 | 
. . . . 5
 | |
| 15 | simpl 109 | 
. . . . 5
 | |
| 16 | 14, 15 | biimtrdi 163 | 
. . . 4
 | 
| 17 | 16 | exlimdv 1833 | 
. . 3
 | 
| 18 | 13, 17 | impbid 129 | 
. 2
 | 
| 19 | 2, 18 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: releldm2 6243 | 
| Copyright terms: Public domain | W3C validator |