ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1steq Unicode version

Theorem op1steq 6176
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq  |-  ( A  e.  ( V  X.  W )  ->  (
( 1st `  A
)  =  B  <->  E. x  A  =  <. B ,  x >. ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 4733 . . 3  |-  ( V  X.  W )  C_  ( _V  X.  _V )
21sseli 3151 . 2  |-  ( A  e.  ( V  X.  W )  ->  A  e.  ( _V  X.  _V ) )
3 eqid 2177 . . . . . 6  |-  ( 2nd `  A )  =  ( 2nd `  A )
4 eqopi 6169 . . . . . 6  |-  ( ( A  e.  ( _V 
X.  _V )  /\  (
( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  ( 2nd `  A
) ) )  ->  A  =  <. B , 
( 2nd `  A
) >. )
53, 4mpanr2 438 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  A  =  <. B ,  ( 2nd `  A )
>. )
6 2ndexg 6165 . . . . . . 7  |-  ( A  e.  ( _V  X.  _V )  ->  ( 2nd `  A )  e.  _V )
7 opeq2 3779 . . . . . . . . 9  |-  ( x  =  ( 2nd `  A
)  ->  <. B ,  x >.  =  <. B , 
( 2nd `  A
) >. )
87eqeq2d 2189 . . . . . . . 8  |-  ( x  =  ( 2nd `  A
)  ->  ( A  =  <. B ,  x >.  <-> 
A  =  <. B , 
( 2nd `  A
) >. ) )
98spcegv 2825 . . . . . . 7  |-  ( ( 2nd `  A )  e.  _V  ->  ( A  =  <. B , 
( 2nd `  A
) >.  ->  E. x  A  =  <. B ,  x >. ) )
106, 9syl 14 . . . . . 6  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  ( 2nd `  A )
>.  ->  E. x  A  = 
<. B ,  x >. ) )
1110adantr 276 . . . . 5  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  ( A  =  <. B , 
( 2nd `  A
) >.  ->  E. x  A  =  <. B ,  x >. ) )
125, 11mpd 13 . . . 4  |-  ( ( A  e.  ( _V 
X.  _V )  /\  ( 1st `  A )  =  B )  ->  E. x  A  =  <. B ,  x >. )
1312ex 115 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  B  ->  E. x  A  =  <. B ,  x >. ) )
14 eqop 6174 . . . . 5  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  x >.  <-> 
( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  x ) ) )
15 simpl 109 . . . . 5  |-  ( ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  x )  -> 
( 1st `  A
)  =  B )
1614, 15syl6bi 163 . . . 4  |-  ( A  e.  ( _V  X.  _V )  ->  ( A  =  <. B ,  x >.  ->  ( 1st `  A
)  =  B ) )
1716exlimdv 1819 . . 3  |-  ( A  e.  ( _V  X.  _V )  ->  ( E. x  A  =  <. B ,  x >.  ->  ( 1st `  A )  =  B ) )
1813, 17impbid 129 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( ( 1st `  A )  =  B  <->  E. x  A  =  <. B ,  x >. ) )
192, 18syl 14 1  |-  ( A  e.  ( V  X.  W )  ->  (
( 1st `  A
)  =  B  <->  E. x  A  =  <. B ,  x >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2737   <.cop 3595    X. cxp 4623   ` cfv 5214   1stc1st 6135   2ndc2nd 6136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-iota 5176  df-fun 5216  df-fn 5217  df-f 5218  df-fo 5220  df-fv 5222  df-1st 6137  df-2nd 6138
This theorem is referenced by:  releldm2  6182
  Copyright terms: Public domain W3C validator