ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fpmg Unicode version

Theorem fpmg 6676
Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
fpmg  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)

Proof of Theorem fpmg
StepHypRef Expression
1 ssid 3177 . . . 4  |-  A  C_  A
2 elpm2r 6668 . . . 4  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  ( F : A --> B  /\  A  C_  A ) )  ->  F  e.  ( B  ^pm  A ) )
31, 2mpanr2 438 . . 3  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  F : A
--> B )  ->  F  e.  ( B  ^pm  A
) )
433impa 1194 . 2  |-  ( ( B  e.  W  /\  A  e.  V  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)
543com12 1207 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148    C_ wss 3131   -->wf 5214  (class class class)co 5877    ^pm cpm 6651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pm 6653
This theorem is referenced by:  fpm  6683  mapsspm  6684  dvef  14273
  Copyright terms: Public domain W3C validator