ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fpmg Unicode version

Theorem fpmg 6652
Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
fpmg  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)

Proof of Theorem fpmg
StepHypRef Expression
1 ssid 3167 . . . 4  |-  A  C_  A
2 elpm2r 6644 . . . 4  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  ( F : A --> B  /\  A  C_  A ) )  ->  F  e.  ( B  ^pm  A ) )
31, 2mpanr2 436 . . 3  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  F : A
--> B )  ->  F  e.  ( B  ^pm  A
) )
433impa 1189 . 2  |-  ( ( B  e.  W  /\  A  e.  V  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)
543com12 1202 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    e. wcel 2141    C_ wss 3121   -->wf 5194  (class class class)co 5853    ^pm cpm 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pm 6629
This theorem is referenced by:  fpm  6659  mapsspm  6660  dvef  13482
  Copyright terms: Public domain W3C validator