ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd Unicode version

Theorem prsradd 7870
Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsradd
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7638 . . . 4  |-  1P  e.  P.
2 addclpr 7621 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
31, 2mpan2 425 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  1P )  e. 
P. )
4 addclpr 7621 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
51, 4mpan2 425 . . 3  |-  ( B  e.  P.  ->  ( B  +P.  1P )  e. 
P. )
6 addsrpr 7829 . . . . 5  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  )
71, 6mpanl2 435 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  (
( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
81, 7mpanr2 438 . . 3  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
93, 5, 8syl2an 289 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
10 simpl 109 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
111a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
12 simpr 110 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
13 addcomprg 7662 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1413adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
15 addassprg 7663 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
1615adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( (
f  +P.  g )  +P.  h )  =  ( f  +P.  ( g  +P.  h ) ) )
17 addclpr 7621 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
1817adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  e.  P. )
1910, 11, 12, 14, 16, 11, 18caov4d 6112 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( A  +P.  B )  +P.  ( 1P  +P.  1P ) ) )
20 addclpr 7621 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21 addclpr 7621 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
221, 1, 21mp2an 426 . . . . . . . 8  |-  ( 1P 
+P.  1P )  e.  P.
2322a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  1P )  e.  P. )
24 addcomprg 7662 . . . . . . 7  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2520, 23, 24syl2anc 411 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2619, 25eqtrd 2229 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) ) )
2726oveq1d 5940 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( (
( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P ) )
28 addassprg 7663 . . . . 5  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( A  +P.  B )  e. 
P.  /\  1P  e.  P. )  ->  ( ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
2923, 20, 11, 28syl3anc 1249 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
3027, 29eqtrd 2229 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
31 addclpr 7621 . . . . 5  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
323, 5, 31syl2an 289 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
33 addclpr 7621 . . . . 5  |-  ( ( ( A  +P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  +P.  B )  +P.  1P )  e.  P. )
3420, 11, 33syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  1P )  e.  P. )
35 enreceq 7820 . . . . . 6  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( ( A  +P.  B )  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  <->  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
361, 35mpanr2 438 . . . . 5  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( A  +P.  B )  +P.  1P )  e.  P. )  -> 
( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3722, 36mpanl2 435 . . . 4  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  (
( A  +P.  B
)  +P.  1P )  e.  P. )  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3832, 34, 37syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3930, 38mpbird 167 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  )
409, 39eqtr2d 2230 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3626  (class class class)co 5925   [cec 6599   P.cnp 7375   1Pc1p 7376    +P. cpp 7377    ~R cer 7380    +R cplr 7385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-enr 7810  df-nr 7811  df-plr 7812
This theorem is referenced by:  caucvgsrlemcau  7877  caucvgsrlemgt1  7879
  Copyright terms: Public domain W3C validator