ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd Unicode version

Theorem prsradd 7898
Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsradd
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7666 . . . 4  |-  1P  e.  P.
2 addclpr 7649 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
31, 2mpan2 425 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  1P )  e. 
P. )
4 addclpr 7649 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
51, 4mpan2 425 . . 3  |-  ( B  e.  P.  ->  ( B  +P.  1P )  e. 
P. )
6 addsrpr 7857 . . . . 5  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  )
71, 6mpanl2 435 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  (
( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
81, 7mpanr2 438 . . 3  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
93, 5, 8syl2an 289 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
10 simpl 109 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
111a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
12 simpr 110 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
13 addcomprg 7690 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1413adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
15 addassprg 7691 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
1615adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( (
f  +P.  g )  +P.  h )  =  ( f  +P.  ( g  +P.  h ) ) )
17 addclpr 7649 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
1817adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  e.  P. )
1910, 11, 12, 14, 16, 11, 18caov4d 6130 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( A  +P.  B )  +P.  ( 1P  +P.  1P ) ) )
20 addclpr 7649 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21 addclpr 7649 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
221, 1, 21mp2an 426 . . . . . . . 8  |-  ( 1P 
+P.  1P )  e.  P.
2322a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  1P )  e.  P. )
24 addcomprg 7690 . . . . . . 7  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2520, 23, 24syl2anc 411 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2619, 25eqtrd 2237 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) ) )
2726oveq1d 5958 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( (
( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P ) )
28 addassprg 7691 . . . . 5  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( A  +P.  B )  e. 
P.  /\  1P  e.  P. )  ->  ( ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
2923, 20, 11, 28syl3anc 1249 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
3027, 29eqtrd 2237 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
31 addclpr 7649 . . . . 5  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
323, 5, 31syl2an 289 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
33 addclpr 7649 . . . . 5  |-  ( ( ( A  +P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  +P.  B )  +P.  1P )  e.  P. )
3420, 11, 33syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  1P )  e.  P. )
35 enreceq 7848 . . . . . 6  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( ( A  +P.  B )  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  <->  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
361, 35mpanr2 438 . . . . 5  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( A  +P.  B )  +P.  1P )  e.  P. )  -> 
( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3722, 36mpanl2 435 . . . 4  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  (
( A  +P.  B
)  +P.  1P )  e.  P. )  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3832, 34, 37syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3930, 38mpbird 167 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  )
409, 39eqtr2d 2238 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   <.cop 3635  (class class class)co 5943   [cec 6617   P.cnp 7403   1Pc1p 7404    +P. cpp 7405    ~R cer 7408    +R cplr 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-i1p 7579  df-iplp 7580  df-enr 7838  df-nr 7839  df-plr 7840
This theorem is referenced by:  caucvgsrlemcau  7905  caucvgsrlemgt1  7907
  Copyright terms: Public domain W3C validator