ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsradd Unicode version

Theorem prsradd 7848
Description: Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsradd  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )

Proof of Theorem prsradd
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pr 7616 . . . 4  |-  1P  e.  P.
2 addclpr 7599 . . . 4  |-  ( ( A  e.  P.  /\  1P  e.  P. )  -> 
( A  +P.  1P )  e.  P. )
31, 2mpan2 425 . . 3  |-  ( A  e.  P.  ->  ( A  +P.  1P )  e. 
P. )
4 addclpr 7599 . . . 4  |-  ( ( B  e.  P.  /\  1P  e.  P. )  -> 
( B  +P.  1P )  e.  P. )
51, 4mpan2 425 . . 3  |-  ( B  e.  P.  ->  ( B  +P.  1P )  e. 
P. )
6 addsrpr 7807 . . . . 5  |-  ( ( ( ( A  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  ( ( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  )
71, 6mpanl2 435 . . . 4  |-  ( ( ( A  +P.  1P )  e.  P.  /\  (
( B  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
81, 7mpanr2 438 . . 3  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
93, 5, 8syl2an 289 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( B  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
10 simpl 109 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A  e.  P. )
111a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  1P  e.  P. )
12 simpr 110 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  B  e.  P. )
13 addcomprg 7640 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
1413adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  =  ( g  +P.  f ) )
15 addassprg 7641 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
( f  +P.  g
)  +P.  h )  =  ( f  +P.  ( g  +P.  h
) ) )
1615adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )
)  ->  ( (
f  +P.  g )  +P.  h )  =  ( f  +P.  ( g  +P.  h ) ) )
17 addclpr 7599 . . . . . . . 8  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  e.  P. )
1817adantl 277 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( f  e.  P.  /\  g  e.  P. )
)  ->  ( f  +P.  g )  e.  P. )
1910, 11, 12, 14, 16, 11, 18caov4d 6105 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( A  +P.  B )  +P.  ( 1P  +P.  1P ) ) )
20 addclpr 7599 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  +P.  B
)  e.  P. )
21 addclpr 7599 . . . . . . . . 9  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
221, 1, 21mp2an 426 . . . . . . . 8  |-  ( 1P 
+P.  1P )  e.  P.
2322a1i 9 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 1P  +P.  1P )  e.  P. )
24 addcomprg 7640 . . . . . . 7  |-  ( ( ( A  +P.  B
)  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2520, 23, 24syl2anc 411 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  ( 1P 
+P.  1P ) )  =  ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) ) )
2619, 25eqtrd 2226 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  =  ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) ) )
2726oveq1d 5934 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( (
( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P ) )
28 addassprg 7641 . . . . 5  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  ( A  +P.  B )  e. 
P.  /\  1P  e.  P. )  ->  ( ( ( 1P  +P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
2923, 20, 11, 28syl3anc 1249 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( 1P 
+P.  1P )  +P.  ( A  +P.  B ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
3027, 29eqtrd 2226 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) )
31 addclpr 7599 . . . . 5  |-  ( ( ( A  +P.  1P )  e.  P.  /\  ( B  +P.  1P )  e. 
P. )  ->  (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
323, 5, 31syl2an 289 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P. )
33 addclpr 7599 . . . . 5  |-  ( ( ( A  +P.  B
)  e.  P.  /\  1P  e.  P. )  -> 
( ( A  +P.  B )  +P.  1P )  e.  P. )
3420, 11, 33syl2anc 411 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( A  +P.  B )  +P.  1P )  e.  P. )
35 enreceq 7798 . . . . . 6  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( ( A  +P.  B )  +P. 
1P )  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P ) >. ]  ~R  =  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  <->  ( (
( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
361, 35mpanr2 438 . . . . 5  |-  ( ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( A  +P.  B )  +P.  1P )  e.  P. )  -> 
( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3722, 36mpanl2 435 . . . 4  |-  ( ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  e.  P.  /\  (
( A  +P.  B
)  +P.  1P )  e.  P. )  ->  ( [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3832, 34, 37syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. (
( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  <->  ( ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) )  +P.  1P )  =  ( ( 1P  +P.  1P )  +P.  ( ( A  +P.  B )  +P.  1P ) ) ) )
3930, 38mpbird 167 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  1P )  +P.  ( B  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( A  +P.  B )  +P.  1P ) ,  1P >. ]  ~R  )
409, 39eqtr2d 2227 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B )  +P. 
1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R  [ <. ( B  +P.  1P ) ,  1P >. ]  ~R  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   <.cop 3622  (class class class)co 5919   [cec 6587   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    ~R cer 7358    +R cplr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790
This theorem is referenced by:  caucvgsrlemcau  7855  caucvgsrlemgt1  7857
  Copyright terms: Public domain W3C validator