ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addltmul Unicode version

Theorem addltmul 8854
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )

Proof of Theorem addltmul
StepHypRef Expression
1 2re 8694 . . . . . . 7  |-  2  e.  RR
2 1re 7683 . . . . . . 7  |-  1  e.  RR
3 ltsub1 8133 . . . . . . 7  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
41, 2, 3mp3an13 1287 . . . . . 6  |-  ( A  e.  RR  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
5 2m1e1 8742 . . . . . . 7  |-  ( 2  -  1 )  =  1
65breq1i 3900 . . . . . 6  |-  ( ( 2  -  1 )  <  ( A  - 
1 )  <->  1  <  ( A  -  1 ) )
74, 6syl6bb 195 . . . . 5  |-  ( A  e.  RR  ->  (
2  <  A  <->  1  <  ( A  -  1 ) ) )
8 ltsub1 8133 . . . . . . 7  |-  ( ( 2  e.  RR  /\  B  e.  RR  /\  1  e.  RR )  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
91, 2, 8mp3an13 1287 . . . . . 6  |-  ( B  e.  RR  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
105breq1i 3900 . . . . . 6  |-  ( ( 2  -  1 )  <  ( B  - 
1 )  <->  1  <  ( B  -  1 ) )
119, 10syl6bb 195 . . . . 5  |-  ( B  e.  RR  ->  (
2  <  B  <->  1  <  ( B  -  1 ) ) )
127, 11bi2anan9 578 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  <->  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) ) )
13 peano2rem 7946 . . . . 5  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
14 peano2rem 7946 . . . . 5  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
15 mulgt1 8525 . . . . . 6  |-  ( ( ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
1615ex 114 . . . . 5  |-  ( ( ( A  -  1 )  e.  RR  /\  ( B  -  1
)  e.  RR )  ->  ( ( 1  <  ( A  - 
1 )  /\  1  <  ( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
1713, 14, 16syl2an 285 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
1812, 17sylbid 149 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  ->  1  <  ( ( A  -  1 )  x.  ( B  -  1 ) ) ) )
19 recn 7671 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
20 recn 7671 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
21 ax-1cn 7632 . . . . . . 7  |-  1  e.  CC
22 mulsub 8076 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2321, 22mpanl2 429 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  1  e.  CC ) )  ->  ( ( A  -  1 )  x.  ( B  - 
1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2421, 23mpanr2 432 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2519, 20, 24syl2an 285 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2625breq2d 3905 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
27 1t1e1 8770 . . . . . . 7  |-  ( 1  x.  1 )  =  1
2827oveq2i 5737 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
2928breq2i 3901 . . . . 5  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  ( 1  x.  1 ) )  <->  ( (
( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  < 
( ( A  x.  B )  +  1 ) )
30 remulcl 7666 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  x.  1 )  e.  RR )
312, 30mpan2 419 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  e.  RR )
32 remulcl 7666 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  e.  RR )  ->  ( B  x.  1 )  e.  RR )
332, 32mpan2 419 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  x.  1 )  e.  RR )
34 readdcl 7664 . . . . . . 7  |-  ( ( ( A  x.  1 )  e.  RR  /\  ( B  x.  1
)  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR )
3531, 33, 34syl2an 285 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR )
36 remulcl 7666 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
372, 2remulcli 7698 . . . . . . 7  |-  ( 1  x.  1 )  e.  RR
38 readdcl 7664 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  ( 1  x.  1 )  e.  RR )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )
3936, 37, 38sylancl 407 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )
40 ltaddsub2 8112 . . . . . . 7  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  1  e.  RR  /\  (
( A  x.  B
)  +  ( 1  x.  1 ) )  e.  RR )  -> 
( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  ( 1  x.  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
412, 40mp3an2 1284 . . . . . 6  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  < 
( ( A  x.  B )  +  ( 1  x.  1 ) )  <->  1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4235, 39, 41syl2anc 406 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  ( 1  x.  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4329, 42syl5rbbr 194 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  <-> 
( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
44 ltadd1 8104 . . . . . . 7  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
452, 44mp3an3 1285 . . . . . 6  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  < 
( A  x.  B
)  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  1 ) ) )
4635, 36, 45syl2anc 406 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
47 ax-1rid 7646 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
48 ax-1rid 7646 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  x.  1 )  =  B )
4947, 48oveqan12d 5745 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
5049breq1d 3903 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( A  +  B )  <  ( A  x.  B ) ) )
5146, 50bitr3d 189 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  1 )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
5226, 43, 513bitrd 213 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
5318, 52sylibd 148 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  ->  ( A  +  B )  <  ( A  x.  B )
) )
5453imp 123 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1312    e. wcel 1461   class class class wbr 3893  (class class class)co 5726   CCcc 7539   RRcr 7540   1c1 7542    + caddc 7544    x. cmul 7546    < clt 7718    - cmin 7850   2c2 8675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-lttrn 7653  ax-pre-ltadd 7655  ax-pre-mulgt0 7656
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-ltxr 7723  df-sub 7852  df-neg 7853  df-2 8683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator