| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addltmul | Unicode version | ||
| Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| addltmul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9168 |
. . . . . . 7
| |
| 2 | 1re 8133 |
. . . . . . 7
| |
| 3 | ltsub1 8593 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | mp3an13 1362 |
. . . . . 6
|
| 5 | 2m1e1 9216 |
. . . . . . 7
| |
| 6 | 5 | breq1i 4089 |
. . . . . 6
|
| 7 | 4, 6 | bitrdi 196 |
. . . . 5
|
| 8 | ltsub1 8593 |
. . . . . . 7
| |
| 9 | 1, 2, 8 | mp3an13 1362 |
. . . . . 6
|
| 10 | 5 | breq1i 4089 |
. . . . . 6
|
| 11 | 9, 10 | bitrdi 196 |
. . . . 5
|
| 12 | 7, 11 | bi2anan9 608 |
. . . 4
|
| 13 | peano2rem 8401 |
. . . . 5
| |
| 14 | peano2rem 8401 |
. . . . 5
| |
| 15 | mulgt1 8998 |
. . . . . 6
| |
| 16 | 15 | ex 115 |
. . . . 5
|
| 17 | 13, 14, 16 | syl2an 289 |
. . . 4
|
| 18 | 12, 17 | sylbid 150 |
. . 3
|
| 19 | recn 8120 |
. . . . . 6
| |
| 20 | recn 8120 |
. . . . . 6
| |
| 21 | ax-1cn 8080 |
. . . . . . 7
| |
| 22 | mulsub 8535 |
. . . . . . . 8
| |
| 23 | 21, 22 | mpanl2 435 |
. . . . . . 7
|
| 24 | 21, 23 | mpanr2 438 |
. . . . . 6
|
| 25 | 19, 20, 24 | syl2an 289 |
. . . . 5
|
| 26 | 25 | breq2d 4094 |
. . . 4
|
| 27 | remulcl 8115 |
. . . . . . . 8
| |
| 28 | 2, 27 | mpan2 425 |
. . . . . . 7
|
| 29 | remulcl 8115 |
. . . . . . . 8
| |
| 30 | 2, 29 | mpan2 425 |
. . . . . . 7
|
| 31 | readdcl 8113 |
. . . . . . 7
| |
| 32 | 28, 30, 31 | syl2an 289 |
. . . . . 6
|
| 33 | remulcl 8115 |
. . . . . . 7
| |
| 34 | 2, 2 | remulcli 8148 |
. . . . . . 7
|
| 35 | readdcl 8113 |
. . . . . . 7
| |
| 36 | 33, 34, 35 | sylancl 413 |
. . . . . 6
|
| 37 | ltaddsub2 8572 |
. . . . . . 7
| |
| 38 | 2, 37 | mp3an2 1359 |
. . . . . 6
|
| 39 | 32, 36, 38 | syl2anc 411 |
. . . . 5
|
| 40 | 1t1e1 9251 |
. . . . . . 7
| |
| 41 | 40 | oveq2i 6005 |
. . . . . 6
|
| 42 | 41 | breq2i 4090 |
. . . . 5
|
| 43 | 39, 42 | bitr3di 195 |
. . . 4
|
| 44 | ltadd1 8564 |
. . . . . . 7
| |
| 45 | 2, 44 | mp3an3 1360 |
. . . . . 6
|
| 46 | 32, 33, 45 | syl2anc 411 |
. . . . 5
|
| 47 | ax-1rid 8094 |
. . . . . . 7
| |
| 48 | ax-1rid 8094 |
. . . . . . 7
| |
| 49 | 47, 48 | oveqan12d 6013 |
. . . . . 6
|
| 50 | 49 | breq1d 4092 |
. . . . 5
|
| 51 | 46, 50 | bitr3d 190 |
. . . 4
|
| 52 | 26, 43, 51 | 3bitrd 214 |
. . 3
|
| 53 | 18, 52 | sylibd 149 |
. 2
|
| 54 | 53 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-lttrn 8101 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-sub 8307 df-neg 8308 df-2 9157 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |