| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addltmul | Unicode version | ||
| Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.) |
| Ref | Expression |
|---|---|
| addltmul |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9119 |
. . . . . . 7
| |
| 2 | 1re 8084 |
. . . . . . 7
| |
| 3 | ltsub1 8544 |
. . . . . . 7
| |
| 4 | 1, 2, 3 | mp3an13 1341 |
. . . . . 6
|
| 5 | 2m1e1 9167 |
. . . . . . 7
| |
| 6 | 5 | breq1i 4055 |
. . . . . 6
|
| 7 | 4, 6 | bitrdi 196 |
. . . . 5
|
| 8 | ltsub1 8544 |
. . . . . . 7
| |
| 9 | 1, 2, 8 | mp3an13 1341 |
. . . . . 6
|
| 10 | 5 | breq1i 4055 |
. . . . . 6
|
| 11 | 9, 10 | bitrdi 196 |
. . . . 5
|
| 12 | 7, 11 | bi2anan9 606 |
. . . 4
|
| 13 | peano2rem 8352 |
. . . . 5
| |
| 14 | peano2rem 8352 |
. . . . 5
| |
| 15 | mulgt1 8949 |
. . . . . 6
| |
| 16 | 15 | ex 115 |
. . . . 5
|
| 17 | 13, 14, 16 | syl2an 289 |
. . . 4
|
| 18 | 12, 17 | sylbid 150 |
. . 3
|
| 19 | recn 8071 |
. . . . . 6
| |
| 20 | recn 8071 |
. . . . . 6
| |
| 21 | ax-1cn 8031 |
. . . . . . 7
| |
| 22 | mulsub 8486 |
. . . . . . . 8
| |
| 23 | 21, 22 | mpanl2 435 |
. . . . . . 7
|
| 24 | 21, 23 | mpanr2 438 |
. . . . . 6
|
| 25 | 19, 20, 24 | syl2an 289 |
. . . . 5
|
| 26 | 25 | breq2d 4060 |
. . . 4
|
| 27 | remulcl 8066 |
. . . . . . . 8
| |
| 28 | 2, 27 | mpan2 425 |
. . . . . . 7
|
| 29 | remulcl 8066 |
. . . . . . . 8
| |
| 30 | 2, 29 | mpan2 425 |
. . . . . . 7
|
| 31 | readdcl 8064 |
. . . . . . 7
| |
| 32 | 28, 30, 31 | syl2an 289 |
. . . . . 6
|
| 33 | remulcl 8066 |
. . . . . . 7
| |
| 34 | 2, 2 | remulcli 8099 |
. . . . . . 7
|
| 35 | readdcl 8064 |
. . . . . . 7
| |
| 36 | 33, 34, 35 | sylancl 413 |
. . . . . 6
|
| 37 | ltaddsub2 8523 |
. . . . . . 7
| |
| 38 | 2, 37 | mp3an2 1338 |
. . . . . 6
|
| 39 | 32, 36, 38 | syl2anc 411 |
. . . . 5
|
| 40 | 1t1e1 9202 |
. . . . . . 7
| |
| 41 | 40 | oveq2i 5965 |
. . . . . 6
|
| 42 | 41 | breq2i 4056 |
. . . . 5
|
| 43 | 39, 42 | bitr3di 195 |
. . . 4
|
| 44 | ltadd1 8515 |
. . . . . . 7
| |
| 45 | 2, 44 | mp3an3 1339 |
. . . . . 6
|
| 46 | 32, 33, 45 | syl2anc 411 |
. . . . 5
|
| 47 | ax-1rid 8045 |
. . . . . . 7
| |
| 48 | ax-1rid 8045 |
. . . . . . 7
| |
| 49 | 47, 48 | oveqan12d 5973 |
. . . . . 6
|
| 50 | 49 | breq1d 4058 |
. . . . 5
|
| 51 | 46, 50 | bitr3d 190 |
. . . 4
|
| 52 | 26, 43, 51 | 3bitrd 214 |
. . 3
|
| 53 | 18, 52 | sylibd 149 |
. 2
|
| 54 | 53 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-lttrn 8052 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-sub 8258 df-neg 8259 df-2 9108 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |