ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12 Unicode version

Theorem mpteq12 4143
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12  |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)

Proof of Theorem mpteq12
StepHypRef Expression
1 ax-17 1550 . 2  |-  ( A  =  C  ->  A. x  A  =  C )
2 mpteq12f 4140 . 2  |-  ( ( A. x  A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
31, 2sylan 283 1  |-  ( ( A  =  C  /\  A. x  e.  A  B  =  D )  ->  (
x  e.  A  |->  B )  =  ( x  e.  C  |->  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373   A.wral 2486    |-> cmpt 4121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-opab 4122  df-mpt 4123
This theorem is referenced by:  mpteq1  4144  mpteqb  5693  fmptcof  5770  mapxpen  6970  prodeq2w  11982
  Copyright terms: Public domain W3C validator