Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteq12 GIF version

Theorem mpteq12 4014
 Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12
StepHypRef Expression
1 ax-17 1506 . 2 (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶)
2 mpteq12f 4011 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
31, 2sylan 281 1 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  ∀wal 1329   = wceq 1331  ∀wral 2416   ↦ cmpt 3992 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-ral 2421  df-opab 3993  df-mpt 3994 This theorem is referenced by:  mpteq1  4015  mpteqb  5514  fmptcof  5590  mapxpen  6745  prodeq2w  11349
 Copyright terms: Public domain W3C validator