ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb Unicode version

Theorem mpteqb 5555
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5562. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2723 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2520 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 fneq1 5255 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( x  e.  A  |->  B )  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
4 eqid 2157 . . . . . . . 8  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5292 . . . . . . 7  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
6 eqid 2157 . . . . . . . 8  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
76mptfng 5292 . . . . . . 7  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
83, 5, 73bitr4g 222 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V 
<-> 
A. x  e.  A  C  e.  _V )
)
98biimpd 143 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  C  e.  _V )
)
10 r19.26 2583 . . . . . . 7  |-  ( A. x  e.  A  ( B  e.  _V  /\  C  e.  _V )  <->  ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V ) )
11 nfmpt1 4057 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
12 nfmpt1 4057 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  C )
1311, 12nfeq 2307 . . . . . . . . 9  |-  F/ x
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
14 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
1514fveq1d 5467 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  ( ( x  e.  A  |->  C ) `  x
) )
164fvmpt2 5548 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1716ad2ant2lr 502 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
186fvmpt2 5548 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  C  e.  _V )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
1918ad2ant2l 500 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
2015, 17, 193eqtr3d 2198 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  ->  B  =  C )
2120exp31 362 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( x  e.  A  ->  ( ( B  e.  _V  /\  C  e.  _V )  ->  B  =  C ) ) )
2213, 21ralrimi 2528 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  ( ( B  e. 
_V  /\  C  e.  _V )  ->  B  =  C ) )
23 ralim 2516 . . . . . . . 8  |-  ( A. x  e.  A  (
( B  e.  _V  /\  C  e.  _V )  ->  B  =  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2422, 23syl 14 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2510, 24syl5bir 152 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V )  ->  A. x  e.  A  B  =  C ) )
2625expd 256 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  ( A. x  e.  A  C  e.  _V  ->  A. x  e.  A  B  =  C )
) )
279, 26mpdd 41 . . . 4  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  B  =  C )
)
2827com12 30 . . 3  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  B  =  C )
)
29 eqid 2157 . . . 4  |-  A  =  A
30 mpteq12 4047 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3129, 30mpan 421 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3228, 31impbid1 141 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
332, 32syl 14 1  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   _Vcvv 2712    |-> cmpt 4025    Fn wfn 5162   ` cfv 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fn 5170  df-fv 5175
This theorem is referenced by:  eqfnfv  5562  eufnfv  5692  offveqb  6045
  Copyright terms: Public domain W3C validator