ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb Unicode version

Theorem mpteqb 5724
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5731. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2811 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2593 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 fneq1 5408 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( x  e.  A  |->  B )  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
4 eqid 2229 . . . . . . . 8  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5448 . . . . . . 7  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
6 eqid 2229 . . . . . . . 8  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
76mptfng 5448 . . . . . . 7  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
83, 5, 73bitr4g 223 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V 
<-> 
A. x  e.  A  C  e.  _V )
)
98biimpd 144 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  C  e.  _V )
)
10 r19.26 2657 . . . . . . 7  |-  ( A. x  e.  A  ( B  e.  _V  /\  C  e.  _V )  <->  ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V ) )
11 nfmpt1 4176 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
12 nfmpt1 4176 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  C )
1311, 12nfeq 2380 . . . . . . . . 9  |-  F/ x
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
14 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
1514fveq1d 5628 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  ( ( x  e.  A  |->  C ) `  x
) )
164fvmpt2 5717 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1716ad2ant2lr 510 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
186fvmpt2 5717 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  C  e.  _V )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
1918ad2ant2l 508 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
2015, 17, 193eqtr3d 2270 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  ->  B  =  C )
2120exp31 364 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( x  e.  A  ->  ( ( B  e.  _V  /\  C  e.  _V )  ->  B  =  C ) ) )
2213, 21ralrimi 2601 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  ( ( B  e. 
_V  /\  C  e.  _V )  ->  B  =  C ) )
23 ralim 2589 . . . . . . . 8  |-  ( A. x  e.  A  (
( B  e.  _V  /\  C  e.  _V )  ->  B  =  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2422, 23syl 14 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2510, 24biimtrrid 153 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V )  ->  A. x  e.  A  B  =  C ) )
2625expd 258 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  ( A. x  e.  A  C  e.  _V  ->  A. x  e.  A  B  =  C )
) )
279, 26mpdd 41 . . . 4  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  B  =  C )
)
2827com12 30 . . 3  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  B  =  C )
)
29 eqid 2229 . . . 4  |-  A  =  A
30 mpteq12 4166 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3129, 30mpan 424 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3228, 31impbid1 142 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
332, 32syl 14 1  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    |-> cmpt 4144    Fn wfn 5312   ` cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by:  eqfnfv  5731  eufnfv  5869  offveqb  6236  nninfinf  10660  psr1clfi  14646
  Copyright terms: Public domain W3C validator