Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteqb | Unicode version |
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5583. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
mpteqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 | |
2 | 1 | ralimi 2529 | . 2 |
3 | fneq1 5276 | . . . . . . 7 | |
4 | eqid 2165 | . . . . . . . 8 | |
5 | 4 | mptfng 5313 | . . . . . . 7 |
6 | eqid 2165 | . . . . . . . 8 | |
7 | 6 | mptfng 5313 | . . . . . . 7 |
8 | 3, 5, 7 | 3bitr4g 222 | . . . . . 6 |
9 | 8 | biimpd 143 | . . . . 5 |
10 | r19.26 2592 | . . . . . . 7 | |
11 | nfmpt1 4075 | . . . . . . . . . 10 | |
12 | nfmpt1 4075 | . . . . . . . . . 10 | |
13 | 11, 12 | nfeq 2316 | . . . . . . . . 9 |
14 | simpll 519 | . . . . . . . . . . . 12 | |
15 | 14 | fveq1d 5488 | . . . . . . . . . . 11 |
16 | 4 | fvmpt2 5569 | . . . . . . . . . . . 12 |
17 | 16 | ad2ant2lr 502 | . . . . . . . . . . 11 |
18 | 6 | fvmpt2 5569 | . . . . . . . . . . . 12 |
19 | 18 | ad2ant2l 500 | . . . . . . . . . . 11 |
20 | 15, 17, 19 | 3eqtr3d 2206 | . . . . . . . . . 10 |
21 | 20 | exp31 362 | . . . . . . . . 9 |
22 | 13, 21 | ralrimi 2537 | . . . . . . . 8 |
23 | ralim 2525 | . . . . . . . 8 | |
24 | 22, 23 | syl 14 | . . . . . . 7 |
25 | 10, 24 | syl5bir 152 | . . . . . 6 |
26 | 25 | expd 256 | . . . . 5 |
27 | 9, 26 | mpdd 41 | . . . 4 |
28 | 27 | com12 30 | . . 3 |
29 | eqid 2165 | . . . 4 | |
30 | mpteq12 4065 | . . . 4 | |
31 | 29, 30 | mpan 421 | . . 3 |
32 | 28, 31 | impbid1 141 | . 2 |
33 | 2, 32 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 cvv 2726 cmpt 4043 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: eqfnfv 5583 eufnfv 5715 offveqb 6069 |
Copyright terms: Public domain | W3C validator |