ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpteqb Unicode version

Theorem mpteqb 5519
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5526. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
mpteqb  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem mpteqb
StepHypRef Expression
1 elex 2700 . . 3  |-  ( B  e.  V  ->  B  e.  _V )
21ralimi 2498 . 2  |-  ( A. x  e.  A  B  e.  V  ->  A. x  e.  A  B  e.  _V )
3 fneq1 5219 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( x  e.  A  |->  B )  Fn  A  <->  ( x  e.  A  |->  C )  Fn  A ) )
4 eqid 2140 . . . . . . . 8  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5256 . . . . . . 7  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
6 eqid 2140 . . . . . . . 8  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
76mptfng 5256 . . . . . . 7  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
83, 5, 73bitr4g 222 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V 
<-> 
A. x  e.  A  C  e.  _V )
)
98biimpd 143 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  C  e.  _V )
)
10 r19.26 2561 . . . . . . 7  |-  ( A. x  e.  A  ( B  e.  _V  /\  C  e.  _V )  <->  ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V ) )
11 nfmpt1 4029 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
12 nfmpt1 4029 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  C )
1311, 12nfeq 2290 . . . . . . . . 9  |-  F/ x
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )
14 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
1514fveq1d 5431 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  ( ( x  e.  A  |->  C ) `  x
) )
164fvmpt2 5512 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( ( x  e.  A  |->  B ) `  x )  =  B )
1716ad2ant2lr 502 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
186fvmpt2 5512 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  C  e.  _V )  ->  ( ( x  e.  A  |->  C ) `  x )  =  C )
1918ad2ant2l 500 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  -> 
( ( x  e.  A  |->  C ) `  x )  =  C )
2015, 17, 193eqtr3d 2181 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  /\  x  e.  A )  /\  ( B  e.  _V  /\  C  e.  _V ) )  ->  B  =  C )
2120exp31 362 . . . . . . . . 9  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( x  e.  A  ->  ( ( B  e.  _V  /\  C  e.  _V )  ->  B  =  C ) ) )
2213, 21ralrimi 2506 . . . . . . . 8  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  ( ( B  e. 
_V  /\  C  e.  _V )  ->  B  =  C ) )
23 ralim 2494 . . . . . . . 8  |-  ( A. x  e.  A  (
( B  e.  _V  /\  C  e.  _V )  ->  B  =  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2422, 23syl 14 . . . . . . 7  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  ( B  e.  _V  /\  C  e. 
_V )  ->  A. x  e.  A  B  =  C ) )
2510, 24syl5bir 152 . . . . . 6  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( ( A. x  e.  A  B  e.  _V  /\  A. x  e.  A  C  e.  _V )  ->  A. x  e.  A  B  =  C ) )
2625expd 256 . . . . 5  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  ( A. x  e.  A  C  e.  _V  ->  A. x  e.  A  B  =  C )
) )
279, 26mpdd 41 . . . 4  |-  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  ( A. x  e.  A  B  e.  _V  ->  A. x  e.  A  B  =  C )
)
2827com12 30 . . 3  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  ->  A. x  e.  A  B  =  C )
)
29 eqid 2140 . . . 4  |-  A  =  A
30 mpteq12 4019 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  B  =  C )  ->  (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3129, 30mpan 421 . . 3  |-  ( A. x  e.  A  B  =  C  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C ) )
3228, 31impbid1 141 . 2  |-  ( A. x  e.  A  B  e.  _V  ->  ( (
x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
332, 32syl 14 1  |-  ( A. x  e.  A  B  e.  V  ->  ( ( x  e.  A  |->  B )  =  ( x  e.  A  |->  C )  <->  A. x  e.  A  B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   _Vcvv 2689    |-> cmpt 3997    Fn wfn 5126   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139
This theorem is referenced by:  eqfnfv  5526  eufnfv  5656  offveqb  6009
  Copyright terms: Public domain W3C validator