| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteqb | Unicode version | ||
| Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5676. (Contributed by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| mpteqb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. . 3
| |
| 2 | 1 | ralimi 2568 |
. 2
|
| 3 | fneq1 5361 |
. . . . . . 7
| |
| 4 | eqid 2204 |
. . . . . . . 8
| |
| 5 | 4 | mptfng 5400 |
. . . . . . 7
|
| 6 | eqid 2204 |
. . . . . . . 8
| |
| 7 | 6 | mptfng 5400 |
. . . . . . 7
|
| 8 | 3, 5, 7 | 3bitr4g 223 |
. . . . . 6
|
| 9 | 8 | biimpd 144 |
. . . . 5
|
| 10 | r19.26 2631 |
. . . . . . 7
| |
| 11 | nfmpt1 4136 |
. . . . . . . . . 10
| |
| 12 | nfmpt1 4136 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | nfeq 2355 |
. . . . . . . . 9
|
| 14 | simpll 527 |
. . . . . . . . . . . 12
| |
| 15 | 14 | fveq1d 5577 |
. . . . . . . . . . 11
|
| 16 | 4 | fvmpt2 5662 |
. . . . . . . . . . . 12
|
| 17 | 16 | ad2ant2lr 510 |
. . . . . . . . . . 11
|
| 18 | 6 | fvmpt2 5662 |
. . . . . . . . . . . 12
|
| 19 | 18 | ad2ant2l 508 |
. . . . . . . . . . 11
|
| 20 | 15, 17, 19 | 3eqtr3d 2245 |
. . . . . . . . . 10
|
| 21 | 20 | exp31 364 |
. . . . . . . . 9
|
| 22 | 13, 21 | ralrimi 2576 |
. . . . . . . 8
|
| 23 | ralim 2564 |
. . . . . . . 8
| |
| 24 | 22, 23 | syl 14 |
. . . . . . 7
|
| 25 | 10, 24 | biimtrrid 153 |
. . . . . 6
|
| 26 | 25 | expd 258 |
. . . . 5
|
| 27 | 9, 26 | mpdd 41 |
. . . 4
|
| 28 | 27 | com12 30 |
. . 3
|
| 29 | eqid 2204 |
. . . 4
| |
| 30 | mpteq12 4126 |
. . . 4
| |
| 31 | 29, 30 | mpan 424 |
. . 3
|
| 32 | 28, 31 | impbid1 142 |
. 2
|
| 33 | 2, 32 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 |
| This theorem is referenced by: eqfnfv 5676 eufnfv 5814 offveqb 6177 nninfinf 10586 psr1clfi 14421 |
| Copyright terms: Public domain | W3C validator |