| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteqb | Unicode version | ||
| Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5677. (Contributed by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| mpteqb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. . 3
| |
| 2 | 1 | ralimi 2569 |
. 2
|
| 3 | fneq1 5362 |
. . . . . . 7
| |
| 4 | eqid 2205 |
. . . . . . . 8
| |
| 5 | 4 | mptfng 5401 |
. . . . . . 7
|
| 6 | eqid 2205 |
. . . . . . . 8
| |
| 7 | 6 | mptfng 5401 |
. . . . . . 7
|
| 8 | 3, 5, 7 | 3bitr4g 223 |
. . . . . 6
|
| 9 | 8 | biimpd 144 |
. . . . 5
|
| 10 | r19.26 2632 |
. . . . . . 7
| |
| 11 | nfmpt1 4137 |
. . . . . . . . . 10
| |
| 12 | nfmpt1 4137 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | nfeq 2356 |
. . . . . . . . 9
|
| 14 | simpll 527 |
. . . . . . . . . . . 12
| |
| 15 | 14 | fveq1d 5578 |
. . . . . . . . . . 11
|
| 16 | 4 | fvmpt2 5663 |
. . . . . . . . . . . 12
|
| 17 | 16 | ad2ant2lr 510 |
. . . . . . . . . . 11
|
| 18 | 6 | fvmpt2 5663 |
. . . . . . . . . . . 12
|
| 19 | 18 | ad2ant2l 508 |
. . . . . . . . . . 11
|
| 20 | 15, 17, 19 | 3eqtr3d 2246 |
. . . . . . . . . 10
|
| 21 | 20 | exp31 364 |
. . . . . . . . 9
|
| 22 | 13, 21 | ralrimi 2577 |
. . . . . . . 8
|
| 23 | ralim 2565 |
. . . . . . . 8
| |
| 24 | 22, 23 | syl 14 |
. . . . . . 7
|
| 25 | 10, 24 | biimtrrid 153 |
. . . . . 6
|
| 26 | 25 | expd 258 |
. . . . 5
|
| 27 | 9, 26 | mpdd 41 |
. . . 4
|
| 28 | 27 | com12 30 |
. . 3
|
| 29 | eqid 2205 |
. . . 4
| |
| 30 | mpteq12 4127 |
. . . 4
| |
| 31 | 29, 30 | mpan 424 |
. . 3
|
| 32 | 28, 31 | impbid1 142 |
. 2
|
| 33 | 2, 32 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 |
| This theorem is referenced by: eqfnfv 5677 eufnfv 5815 offveqb 6178 nninfinf 10588 psr1clfi 14450 |
| Copyright terms: Public domain | W3C validator |