Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteqb | Unicode version |
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5593. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
mpteqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . 3 | |
2 | 1 | ralimi 2533 | . 2 |
3 | fneq1 5286 | . . . . . . 7 | |
4 | eqid 2170 | . . . . . . . 8 | |
5 | 4 | mptfng 5323 | . . . . . . 7 |
6 | eqid 2170 | . . . . . . . 8 | |
7 | 6 | mptfng 5323 | . . . . . . 7 |
8 | 3, 5, 7 | 3bitr4g 222 | . . . . . 6 |
9 | 8 | biimpd 143 | . . . . 5 |
10 | r19.26 2596 | . . . . . . 7 | |
11 | nfmpt1 4082 | . . . . . . . . . 10 | |
12 | nfmpt1 4082 | . . . . . . . . . 10 | |
13 | 11, 12 | nfeq 2320 | . . . . . . . . 9 |
14 | simpll 524 | . . . . . . . . . . . 12 | |
15 | 14 | fveq1d 5498 | . . . . . . . . . . 11 |
16 | 4 | fvmpt2 5579 | . . . . . . . . . . . 12 |
17 | 16 | ad2ant2lr 507 | . . . . . . . . . . 11 |
18 | 6 | fvmpt2 5579 | . . . . . . . . . . . 12 |
19 | 18 | ad2ant2l 505 | . . . . . . . . . . 11 |
20 | 15, 17, 19 | 3eqtr3d 2211 | . . . . . . . . . 10 |
21 | 20 | exp31 362 | . . . . . . . . 9 |
22 | 13, 21 | ralrimi 2541 | . . . . . . . 8 |
23 | ralim 2529 | . . . . . . . 8 | |
24 | 22, 23 | syl 14 | . . . . . . 7 |
25 | 10, 24 | syl5bir 152 | . . . . . 6 |
26 | 25 | expd 256 | . . . . 5 |
27 | 9, 26 | mpdd 41 | . . . 4 |
28 | 27 | com12 30 | . . 3 |
29 | eqid 2170 | . . . 4 | |
30 | mpteq12 4072 | . . . 4 | |
31 | 29, 30 | mpan 422 | . . 3 |
32 | 28, 31 | impbid1 141 | . 2 |
33 | 2, 32 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 cvv 2730 cmpt 4050 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: eqfnfv 5593 eufnfv 5726 offveqb 6080 |
Copyright terms: Public domain | W3C validator |