| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpteqb | Unicode version | ||
| Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5700. (Contributed by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| mpteqb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . 3
| |
| 2 | 1 | ralimi 2571 |
. 2
|
| 3 | fneq1 5381 |
. . . . . . 7
| |
| 4 | eqid 2207 |
. . . . . . . 8
| |
| 5 | 4 | mptfng 5421 |
. . . . . . 7
|
| 6 | eqid 2207 |
. . . . . . . 8
| |
| 7 | 6 | mptfng 5421 |
. . . . . . 7
|
| 8 | 3, 5, 7 | 3bitr4g 223 |
. . . . . 6
|
| 9 | 8 | biimpd 144 |
. . . . 5
|
| 10 | r19.26 2634 |
. . . . . . 7
| |
| 11 | nfmpt1 4153 |
. . . . . . . . . 10
| |
| 12 | nfmpt1 4153 |
. . . . . . . . . 10
| |
| 13 | 11, 12 | nfeq 2358 |
. . . . . . . . 9
|
| 14 | simpll 527 |
. . . . . . . . . . . 12
| |
| 15 | 14 | fveq1d 5601 |
. . . . . . . . . . 11
|
| 16 | 4 | fvmpt2 5686 |
. . . . . . . . . . . 12
|
| 17 | 16 | ad2ant2lr 510 |
. . . . . . . . . . 11
|
| 18 | 6 | fvmpt2 5686 |
. . . . . . . . . . . 12
|
| 19 | 18 | ad2ant2l 508 |
. . . . . . . . . . 11
|
| 20 | 15, 17, 19 | 3eqtr3d 2248 |
. . . . . . . . . 10
|
| 21 | 20 | exp31 364 |
. . . . . . . . 9
|
| 22 | 13, 21 | ralrimi 2579 |
. . . . . . . 8
|
| 23 | ralim 2567 |
. . . . . . . 8
| |
| 24 | 22, 23 | syl 14 |
. . . . . . 7
|
| 25 | 10, 24 | biimtrrid 153 |
. . . . . 6
|
| 26 | 25 | expd 258 |
. . . . 5
|
| 27 | 9, 26 | mpdd 41 |
. . . 4
|
| 28 | 27 | com12 30 |
. . 3
|
| 29 | eqid 2207 |
. . . 4
| |
| 30 | mpteq12 4143 |
. . . 4
| |
| 31 | 29, 30 | mpan 424 |
. . 3
|
| 32 | 28, 31 | impbid1 142 |
. 2
|
| 33 | 2, 32 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: eqfnfv 5700 eufnfv 5838 offveqb 6201 nninfinf 10625 psr1clfi 14565 |
| Copyright terms: Public domain | W3C validator |