Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpteqb | Unicode version |
Description: Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 5562. (Contributed by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
mpteqb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . . 3 | |
2 | 1 | ralimi 2520 | . 2 |
3 | fneq1 5255 | . . . . . . 7 | |
4 | eqid 2157 | . . . . . . . 8 | |
5 | 4 | mptfng 5292 | . . . . . . 7 |
6 | eqid 2157 | . . . . . . . 8 | |
7 | 6 | mptfng 5292 | . . . . . . 7 |
8 | 3, 5, 7 | 3bitr4g 222 | . . . . . 6 |
9 | 8 | biimpd 143 | . . . . 5 |
10 | r19.26 2583 | . . . . . . 7 | |
11 | nfmpt1 4057 | . . . . . . . . . 10 | |
12 | nfmpt1 4057 | . . . . . . . . . 10 | |
13 | 11, 12 | nfeq 2307 | . . . . . . . . 9 |
14 | simpll 519 | . . . . . . . . . . . 12 | |
15 | 14 | fveq1d 5467 | . . . . . . . . . . 11 |
16 | 4 | fvmpt2 5548 | . . . . . . . . . . . 12 |
17 | 16 | ad2ant2lr 502 | . . . . . . . . . . 11 |
18 | 6 | fvmpt2 5548 | . . . . . . . . . . . 12 |
19 | 18 | ad2ant2l 500 | . . . . . . . . . . 11 |
20 | 15, 17, 19 | 3eqtr3d 2198 | . . . . . . . . . 10 |
21 | 20 | exp31 362 | . . . . . . . . 9 |
22 | 13, 21 | ralrimi 2528 | . . . . . . . 8 |
23 | ralim 2516 | . . . . . . . 8 | |
24 | 22, 23 | syl 14 | . . . . . . 7 |
25 | 10, 24 | syl5bir 152 | . . . . . 6 |
26 | 25 | expd 256 | . . . . 5 |
27 | 9, 26 | mpdd 41 | . . . 4 |
28 | 27 | com12 30 | . . 3 |
29 | eqid 2157 | . . . 4 | |
30 | mpteq12 4047 | . . . 4 | |
31 | 29, 30 | mpan 421 | . . 3 |
32 | 28, 31 | impbid1 141 | . 2 |
33 | 2, 32 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 cvv 2712 cmpt 4025 wfn 5162 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fn 5170 df-fv 5175 |
This theorem is referenced by: eqfnfv 5562 eufnfv 5692 offveqb 6045 |
Copyright terms: Public domain | W3C validator |