| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptcof | Unicode version | ||
| Description: Version of fmptco 5769 where |
| Ref | Expression |
|---|---|
| fmptcof.1 |
|
| fmptcof.2 |
|
| fmptcof.3 |
|
| fmptcof.4 |
|
| Ref | Expression |
|---|---|
| fmptcof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 |
. . . . 5
| |
| 2 | nfcsb1v 3134 |
. . . . . . 7
| |
| 3 | 2 | nfel1 2361 |
. . . . . 6
|
| 4 | csbeq1a 3110 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2276 |
. . . . . 6
|
| 6 | 3, 5 | rspc 2878 |
. . . . 5
|
| 7 | 1, 6 | mpan9 281 |
. . . 4
|
| 8 | fmptcof.2 |
. . . . 5
| |
| 9 | nfcv 2350 |
. . . . . 6
| |
| 10 | 9, 2, 4 | cbvmpt 4155 |
. . . . 5
|
| 11 | 8, 10 | eqtrdi 2256 |
. . . 4
|
| 12 | fmptcof.3 |
. . . . 5
| |
| 13 | nfcv 2350 |
. . . . . 6
| |
| 14 | nfcsb1v 3134 |
. . . . . 6
| |
| 15 | csbeq1a 3110 |
. . . . . 6
| |
| 16 | 13, 14, 15 | cbvmpt 4155 |
. . . . 5
|
| 17 | 12, 16 | eqtrdi 2256 |
. . . 4
|
| 18 | csbeq1 3104 |
. . . 4
| |
| 19 | 7, 11, 17, 18 | fmptco 5769 |
. . 3
|
| 20 | nfcv 2350 |
. . . 4
| |
| 21 | nfcv 2350 |
. . . . 5
| |
| 22 | 2, 21 | nfcsb 3139 |
. . . 4
|
| 23 | 4 | csbeq1d 3108 |
. . . 4
|
| 24 | 20, 22, 23 | cbvmpt 4155 |
. . 3
|
| 25 | 19, 24 | eqtr4di 2258 |
. 2
|
| 26 | eqid 2207 |
. . . 4
| |
| 27 | nfcvd 2351 |
. . . . . 6
| |
| 28 | fmptcof.4 |
. . . . . 6
| |
| 29 | 27, 28 | csbiegf 3145 |
. . . . 5
|
| 30 | 29 | ralimi 2571 |
. . . 4
|
| 31 | mpteq12 4143 |
. . . 4
| |
| 32 | 26, 30, 31 | sylancr 414 |
. . 3
|
| 33 | 1, 32 | syl 14 |
. 2
|
| 34 | 25, 33 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 |
| This theorem is referenced by: fmptcos 5771 cncfmpt1f 15185 sincn 15356 coscn 15357 lgseisenlem3 15664 |
| Copyright terms: Public domain | W3C validator |