ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcof Unicode version

Theorem fmptcof 5729
Description: Version of fmptco 5728 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptcof.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptcof  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, y, B   
y, R    x, S    x, A    y, T
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptcof
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 nfcsb1v 3117 . . . . . . 7  |-  F/_ x [_ z  /  x ]_ R
32nfel1 2350 . . . . . 6  |-  F/ x [_ z  /  x ]_ R  e.  B
4 csbeq1a 3093 . . . . . . 7  |-  ( x  =  z  ->  R  =  [_ z  /  x ]_ R )
54eleq1d 2265 . . . . . 6  |-  ( x  =  z  ->  ( R  e.  B  <->  [_ z  /  x ]_ R  e.  B
) )
63, 5rspc 2862 . . . . 5  |-  ( z  e.  A  ->  ( A. x  e.  A  R  e.  B  ->  [_ z  /  x ]_ R  e.  B )
)
71, 6mpan9 281 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ R  e.  B )
8 fmptcof.2 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
9 nfcv 2339 . . . . . 6  |-  F/_ z R
109, 2, 4cbvmpt 4128 . . . . 5  |-  ( x  e.  A  |->  R )  =  ( z  e.  A  |->  [_ z  /  x ]_ R )
118, 10eqtrdi 2245 . . . 4  |-  ( ph  ->  F  =  ( z  e.  A  |->  [_ z  /  x ]_ R ) )
12 fmptcof.3 . . . . 5  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
13 nfcv 2339 . . . . . 6  |-  F/_ w S
14 nfcsb1v 3117 . . . . . 6  |-  F/_ y [_ w  /  y ]_ S
15 csbeq1a 3093 . . . . . 6  |-  ( y  =  w  ->  S  =  [_ w  /  y ]_ S )
1613, 14, 15cbvmpt 4128 . . . . 5  |-  ( y  e.  B  |->  S )  =  ( w  e.  B  |->  [_ w  /  y ]_ S )
1712, 16eqtrdi 2245 . . . 4  |-  ( ph  ->  G  =  ( w  e.  B  |->  [_ w  /  y ]_ S
) )
18 csbeq1 3087 . . . 4  |-  ( w  =  [_ z  /  x ]_ R  ->  [_ w  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
197, 11, 17, 18fmptco 5728 . . 3  |-  ( ph  ->  ( G  o.  F
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S ) )
20 nfcv 2339 . . . 4  |-  F/_ z [_ R  /  y ]_ S
21 nfcv 2339 . . . . 5  |-  F/_ x S
222, 21nfcsb 3122 . . . 4  |-  F/_ x [_ [_ z  /  x ]_ R  /  y ]_ S
234csbeq1d 3091 . . . 4  |-  ( x  =  z  ->  [_ R  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
2420, 22, 23cbvmpt 4128 . . 3  |-  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S )
2519, 24eqtr4di 2247 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
26 eqid 2196 . . . 4  |-  A  =  A
27 nfcvd 2340 . . . . . 6  |-  ( R  e.  B  ->  F/_ y T )
28 fmptcof.4 . . . . . 6  |-  ( y  =  R  ->  S  =  T )
2927, 28csbiegf 3128 . . . . 5  |-  ( R  e.  B  ->  [_ R  /  y ]_ S  =  T )
3029ralimi 2560 . . . 4  |-  ( A. x  e.  A  R  e.  B  ->  A. x  e.  A  [_ R  / 
y ]_ S  =  T )
31 mpteq12 4116 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  [_ R  /  y ]_ S  =  T )  ->  (
x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
3226, 30, 31sylancr 414 . . 3  |-  ( A. x  e.  A  R  e.  B  ->  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
331, 32syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |-> 
[_ R  /  y ]_ S )  =  ( x  e.  A  |->  T ) )
3425, 33eqtrd 2229 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475   [_csb 3084    |-> cmpt 4094    o. ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  fmptcos  5730  cncfmpt1f  14834  sincn  15005  coscn  15006  lgseisenlem3  15313
  Copyright terms: Public domain W3C validator