Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmptcof | Unicode version |
Description: Version of fmptco 5651 where needn't be distinct from . (Contributed by NM, 27-Dec-2014.) |
Ref | Expression |
---|---|
fmptcof.1 | |
fmptcof.2 | |
fmptcof.3 | |
fmptcof.4 |
Ref | Expression |
---|---|
fmptcof |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptcof.1 | . . . . 5 | |
2 | nfcsb1v 3078 | . . . . . . 7 | |
3 | 2 | nfel1 2319 | . . . . . 6 |
4 | csbeq1a 3054 | . . . . . . 7 | |
5 | 4 | eleq1d 2235 | . . . . . 6 |
6 | 3, 5 | rspc 2824 | . . . . 5 |
7 | 1, 6 | mpan9 279 | . . . 4 |
8 | fmptcof.2 | . . . . 5 | |
9 | nfcv 2308 | . . . . . 6 | |
10 | 9, 2, 4 | cbvmpt 4077 | . . . . 5 |
11 | 8, 10 | eqtrdi 2215 | . . . 4 |
12 | fmptcof.3 | . . . . 5 | |
13 | nfcv 2308 | . . . . . 6 | |
14 | nfcsb1v 3078 | . . . . . 6 | |
15 | csbeq1a 3054 | . . . . . 6 | |
16 | 13, 14, 15 | cbvmpt 4077 | . . . . 5 |
17 | 12, 16 | eqtrdi 2215 | . . . 4 |
18 | csbeq1 3048 | . . . 4 | |
19 | 7, 11, 17, 18 | fmptco 5651 | . . 3 |
20 | nfcv 2308 | . . . 4 | |
21 | nfcv 2308 | . . . . 5 | |
22 | 2, 21 | nfcsb 3082 | . . . 4 |
23 | 4 | csbeq1d 3052 | . . . 4 |
24 | 20, 22, 23 | cbvmpt 4077 | . . 3 |
25 | 19, 24 | eqtr4di 2217 | . 2 |
26 | eqid 2165 | . . . 4 | |
27 | nfcvd 2309 | . . . . . 6 | |
28 | fmptcof.4 | . . . . . 6 | |
29 | 27, 28 | csbiegf 3088 | . . . . 5 |
30 | 29 | ralimi 2529 | . . . 4 |
31 | mpteq12 4065 | . . . 4 | |
32 | 26, 30, 31 | sylancr 411 | . . 3 |
33 | 1, 32 | syl 14 | . 2 |
34 | 25, 33 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wral 2444 csb 3045 cmpt 4043 ccom 4608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: fmptcos 5653 cncfmpt1f 13224 sincn 13330 coscn 13331 |
Copyright terms: Public domain | W3C validator |