ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcof Unicode version

Theorem fmptcof 5749
Description: Version of fmptco 5748 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptcof.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptcof  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, y, B   
y, R    x, S    x, A    y, T
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptcof
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 nfcsb1v 3126 . . . . . . 7  |-  F/_ x [_ z  /  x ]_ R
32nfel1 2359 . . . . . 6  |-  F/ x [_ z  /  x ]_ R  e.  B
4 csbeq1a 3102 . . . . . . 7  |-  ( x  =  z  ->  R  =  [_ z  /  x ]_ R )
54eleq1d 2274 . . . . . 6  |-  ( x  =  z  ->  ( R  e.  B  <->  [_ z  /  x ]_ R  e.  B
) )
63, 5rspc 2871 . . . . 5  |-  ( z  e.  A  ->  ( A. x  e.  A  R  e.  B  ->  [_ z  /  x ]_ R  e.  B )
)
71, 6mpan9 281 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ R  e.  B )
8 fmptcof.2 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
9 nfcv 2348 . . . . . 6  |-  F/_ z R
109, 2, 4cbvmpt 4140 . . . . 5  |-  ( x  e.  A  |->  R )  =  ( z  e.  A  |->  [_ z  /  x ]_ R )
118, 10eqtrdi 2254 . . . 4  |-  ( ph  ->  F  =  ( z  e.  A  |->  [_ z  /  x ]_ R ) )
12 fmptcof.3 . . . . 5  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
13 nfcv 2348 . . . . . 6  |-  F/_ w S
14 nfcsb1v 3126 . . . . . 6  |-  F/_ y [_ w  /  y ]_ S
15 csbeq1a 3102 . . . . . 6  |-  ( y  =  w  ->  S  =  [_ w  /  y ]_ S )
1613, 14, 15cbvmpt 4140 . . . . 5  |-  ( y  e.  B  |->  S )  =  ( w  e.  B  |->  [_ w  /  y ]_ S )
1712, 16eqtrdi 2254 . . . 4  |-  ( ph  ->  G  =  ( w  e.  B  |->  [_ w  /  y ]_ S
) )
18 csbeq1 3096 . . . 4  |-  ( w  =  [_ z  /  x ]_ R  ->  [_ w  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
197, 11, 17, 18fmptco 5748 . . 3  |-  ( ph  ->  ( G  o.  F
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S ) )
20 nfcv 2348 . . . 4  |-  F/_ z [_ R  /  y ]_ S
21 nfcv 2348 . . . . 5  |-  F/_ x S
222, 21nfcsb 3131 . . . 4  |-  F/_ x [_ [_ z  /  x ]_ R  /  y ]_ S
234csbeq1d 3100 . . . 4  |-  ( x  =  z  ->  [_ R  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
2420, 22, 23cbvmpt 4140 . . 3  |-  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S )
2519, 24eqtr4di 2256 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
26 eqid 2205 . . . 4  |-  A  =  A
27 nfcvd 2349 . . . . . 6  |-  ( R  e.  B  ->  F/_ y T )
28 fmptcof.4 . . . . . 6  |-  ( y  =  R  ->  S  =  T )
2927, 28csbiegf 3137 . . . . 5  |-  ( R  e.  B  ->  [_ R  /  y ]_ S  =  T )
3029ralimi 2569 . . . 4  |-  ( A. x  e.  A  R  e.  B  ->  A. x  e.  A  [_ R  / 
y ]_ S  =  T )
31 mpteq12 4128 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  [_ R  /  y ]_ S  =  T )  ->  (
x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
3226, 30, 31sylancr 414 . . 3  |-  ( A. x  e.  A  R  e.  B  ->  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
331, 32syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |-> 
[_ R  /  y ]_ S )  =  ( x  e.  A  |->  T ) )
3425, 33eqtrd 2238 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484   [_csb 3093    |-> cmpt 4106    o. ccom 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280
This theorem is referenced by:  fmptcos  5750  cncfmpt1f  15103  sincn  15274  coscn  15275  lgseisenlem3  15582
  Copyright terms: Public domain W3C validator