| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptcof | Unicode version | ||
| Description: Version of fmptco 5801 where |
| Ref | Expression |
|---|---|
| fmptcof.1 |
|
| fmptcof.2 |
|
| fmptcof.3 |
|
| fmptcof.4 |
|
| Ref | Expression |
|---|---|
| fmptcof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 |
. . . . 5
| |
| 2 | nfcsb1v 3157 |
. . . . . . 7
| |
| 3 | 2 | nfel1 2383 |
. . . . . 6
|
| 4 | csbeq1a 3133 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2298 |
. . . . . 6
|
| 6 | 3, 5 | rspc 2901 |
. . . . 5
|
| 7 | 1, 6 | mpan9 281 |
. . . 4
|
| 8 | fmptcof.2 |
. . . . 5
| |
| 9 | nfcv 2372 |
. . . . . 6
| |
| 10 | 9, 2, 4 | cbvmpt 4179 |
. . . . 5
|
| 11 | 8, 10 | eqtrdi 2278 |
. . . 4
|
| 12 | fmptcof.3 |
. . . . 5
| |
| 13 | nfcv 2372 |
. . . . . 6
| |
| 14 | nfcsb1v 3157 |
. . . . . 6
| |
| 15 | csbeq1a 3133 |
. . . . . 6
| |
| 16 | 13, 14, 15 | cbvmpt 4179 |
. . . . 5
|
| 17 | 12, 16 | eqtrdi 2278 |
. . . 4
|
| 18 | csbeq1 3127 |
. . . 4
| |
| 19 | 7, 11, 17, 18 | fmptco 5801 |
. . 3
|
| 20 | nfcv 2372 |
. . . 4
| |
| 21 | nfcv 2372 |
. . . . 5
| |
| 22 | 2, 21 | nfcsb 3162 |
. . . 4
|
| 23 | 4 | csbeq1d 3131 |
. . . 4
|
| 24 | 20, 22, 23 | cbvmpt 4179 |
. . 3
|
| 25 | 19, 24 | eqtr4di 2280 |
. 2
|
| 26 | eqid 2229 |
. . . 4
| |
| 27 | nfcvd 2373 |
. . . . . 6
| |
| 28 | fmptcof.4 |
. . . . . 6
| |
| 29 | 27, 28 | csbiegf 3168 |
. . . . 5
|
| 30 | 29 | ralimi 2593 |
. . . 4
|
| 31 | mpteq12 4167 |
. . . 4
| |
| 32 | 26, 30, 31 | sylancr 414 |
. . 3
|
| 33 | 1, 32 | syl 14 |
. 2
|
| 34 | 25, 33 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: fmptcos 5803 cncfmpt1f 15272 sincn 15443 coscn 15444 lgseisenlem3 15751 |
| Copyright terms: Public domain | W3C validator |