Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fmptcof | Unicode version |
Description: Version of fmptco 5674 where needn't be distinct from . (Contributed by NM, 27-Dec-2014.) |
Ref | Expression |
---|---|
fmptcof.1 | |
fmptcof.2 | |
fmptcof.3 | |
fmptcof.4 |
Ref | Expression |
---|---|
fmptcof |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptcof.1 | . . . . 5 | |
2 | nfcsb1v 3088 | . . . . . . 7 | |
3 | 2 | nfel1 2328 | . . . . . 6 |
4 | csbeq1a 3064 | . . . . . . 7 | |
5 | 4 | eleq1d 2244 | . . . . . 6 |
6 | 3, 5 | rspc 2833 | . . . . 5 |
7 | 1, 6 | mpan9 281 | . . . 4 |
8 | fmptcof.2 | . . . . 5 | |
9 | nfcv 2317 | . . . . . 6 | |
10 | 9, 2, 4 | cbvmpt 4093 | . . . . 5 |
11 | 8, 10 | eqtrdi 2224 | . . . 4 |
12 | fmptcof.3 | . . . . 5 | |
13 | nfcv 2317 | . . . . . 6 | |
14 | nfcsb1v 3088 | . . . . . 6 | |
15 | csbeq1a 3064 | . . . . . 6 | |
16 | 13, 14, 15 | cbvmpt 4093 | . . . . 5 |
17 | 12, 16 | eqtrdi 2224 | . . . 4 |
18 | csbeq1 3058 | . . . 4 | |
19 | 7, 11, 17, 18 | fmptco 5674 | . . 3 |
20 | nfcv 2317 | . . . 4 | |
21 | nfcv 2317 | . . . . 5 | |
22 | 2, 21 | nfcsb 3092 | . . . 4 |
23 | 4 | csbeq1d 3062 | . . . 4 |
24 | 20, 22, 23 | cbvmpt 4093 | . . 3 |
25 | 19, 24 | eqtr4di 2226 | . 2 |
26 | eqid 2175 | . . . 4 | |
27 | nfcvd 2318 | . . . . . 6 | |
28 | fmptcof.4 | . . . . . 6 | |
29 | 27, 28 | csbiegf 3098 | . . . . 5 |
30 | 29 | ralimi 2538 | . . . 4 |
31 | mpteq12 4081 | . . . 4 | |
32 | 26, 30, 31 | sylancr 414 | . . 3 |
33 | 1, 32 | syl 14 | . 2 |
34 | 25, 33 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 wral 2453 csb 3055 cmpt 4059 ccom 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 |
This theorem is referenced by: fmptcos 5676 cncfmpt1f 13655 sincn 13761 coscn 13762 |
Copyright terms: Public domain | W3C validator |