ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmptcof Unicode version

Theorem fmptcof 5587
Description: Version of fmptco 5586 where  ph needn't be distinct from  x. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmptcof.1  |-  ( ph  ->  A. x  e.  A  R  e.  B )
fmptcof.2  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
fmptcof.3  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
fmptcof.4  |-  ( y  =  R  ->  S  =  T )
Assertion
Ref Expression
fmptcof  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Distinct variable groups:    x, y, B   
y, R    x, S    x, A    y, T
Allowed substitution hints:    ph( x, y)    A( y)    R( x)    S( y)    T( x)    F( x, y)    G( x, y)

Proof of Theorem fmptcof
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . . . . 5  |-  ( ph  ->  A. x  e.  A  R  e.  B )
2 nfcsb1v 3035 . . . . . . 7  |-  F/_ x [_ z  /  x ]_ R
32nfel1 2292 . . . . . 6  |-  F/ x [_ z  /  x ]_ R  e.  B
4 csbeq1a 3012 . . . . . . 7  |-  ( x  =  z  ->  R  =  [_ z  /  x ]_ R )
54eleq1d 2208 . . . . . 6  |-  ( x  =  z  ->  ( R  e.  B  <->  [_ z  /  x ]_ R  e.  B
) )
63, 5rspc 2783 . . . . 5  |-  ( z  e.  A  ->  ( A. x  e.  A  R  e.  B  ->  [_ z  /  x ]_ R  e.  B )
)
71, 6mpan9 279 . . . 4  |-  ( (
ph  /\  z  e.  A )  ->  [_ z  /  x ]_ R  e.  B )
8 fmptcof.2 . . . . 5  |-  ( ph  ->  F  =  ( x  e.  A  |->  R ) )
9 nfcv 2281 . . . . . 6  |-  F/_ z R
109, 2, 4cbvmpt 4023 . . . . 5  |-  ( x  e.  A  |->  R )  =  ( z  e.  A  |->  [_ z  /  x ]_ R )
118, 10syl6eq 2188 . . . 4  |-  ( ph  ->  F  =  ( z  e.  A  |->  [_ z  /  x ]_ R ) )
12 fmptcof.3 . . . . 5  |-  ( ph  ->  G  =  ( y  e.  B  |->  S ) )
13 nfcv 2281 . . . . . 6  |-  F/_ w S
14 nfcsb1v 3035 . . . . . 6  |-  F/_ y [_ w  /  y ]_ S
15 csbeq1a 3012 . . . . . 6  |-  ( y  =  w  ->  S  =  [_ w  /  y ]_ S )
1613, 14, 15cbvmpt 4023 . . . . 5  |-  ( y  e.  B  |->  S )  =  ( w  e.  B  |->  [_ w  /  y ]_ S )
1712, 16syl6eq 2188 . . . 4  |-  ( ph  ->  G  =  ( w  e.  B  |->  [_ w  /  y ]_ S
) )
18 csbeq1 3006 . . . 4  |-  ( w  =  [_ z  /  x ]_ R  ->  [_ w  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
197, 11, 17, 18fmptco 5586 . . 3  |-  ( ph  ->  ( G  o.  F
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S ) )
20 nfcv 2281 . . . 4  |-  F/_ z [_ R  /  y ]_ S
21 nfcv 2281 . . . . 5  |-  F/_ x S
222, 21nfcsb 3037 . . . 4  |-  F/_ x [_ [_ z  /  x ]_ R  /  y ]_ S
234csbeq1d 3010 . . . 4  |-  ( x  =  z  ->  [_ R  /  y ]_ S  =  [_ [_ z  /  x ]_ R  /  y ]_ S )
2420, 22, 23cbvmpt 4023 . . 3  |-  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( z  e.  A  |->  [_ [_ z  /  x ]_ R  / 
y ]_ S )
2519, 24syl6eqr 2190 . 2  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  [_ R  /  y ]_ S
) )
26 eqid 2139 . . . 4  |-  A  =  A
27 nfcvd 2282 . . . . . 6  |-  ( R  e.  B  ->  F/_ y T )
28 fmptcof.4 . . . . . 6  |-  ( y  =  R  ->  S  =  T )
2927, 28csbiegf 3043 . . . . 5  |-  ( R  e.  B  ->  [_ R  /  y ]_ S  =  T )
3029ralimi 2495 . . . 4  |-  ( A. x  e.  A  R  e.  B  ->  A. x  e.  A  [_ R  / 
y ]_ S  =  T )
31 mpteq12 4011 . . . 4  |-  ( ( A  =  A  /\  A. x  e.  A  [_ R  /  y ]_ S  =  T )  ->  (
x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
3226, 30, 31sylancr 410 . . 3  |-  ( A. x  e.  A  R  e.  B  ->  ( x  e.  A  |->  [_ R  /  y ]_ S
)  =  ( x  e.  A  |->  T ) )
331, 32syl 14 . 2  |-  ( ph  ->  ( x  e.  A  |-> 
[_ R  /  y ]_ S )  =  ( x  e.  A  |->  T ) )
3425, 33eqtrd 2172 1  |-  ( ph  ->  ( G  o.  F
)  =  ( x  e.  A  |->  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   A.wral 2416   [_csb 3003    |-> cmpt 3989    o. ccom 4543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131
This theorem is referenced by:  fmptcos  5588  cncfmpt1f  12762  sincn  12867  coscn  12868
  Copyright terms: Public domain W3C validator