| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmptcof | Unicode version | ||
| Description: Version of fmptco 5728 where |
| Ref | Expression |
|---|---|
| fmptcof.1 |
|
| fmptcof.2 |
|
| fmptcof.3 |
|
| fmptcof.4 |
|
| Ref | Expression |
|---|---|
| fmptcof |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptcof.1 |
. . . . 5
| |
| 2 | nfcsb1v 3117 |
. . . . . . 7
| |
| 3 | 2 | nfel1 2350 |
. . . . . 6
|
| 4 | csbeq1a 3093 |
. . . . . . 7
| |
| 5 | 4 | eleq1d 2265 |
. . . . . 6
|
| 6 | 3, 5 | rspc 2862 |
. . . . 5
|
| 7 | 1, 6 | mpan9 281 |
. . . 4
|
| 8 | fmptcof.2 |
. . . . 5
| |
| 9 | nfcv 2339 |
. . . . . 6
| |
| 10 | 9, 2, 4 | cbvmpt 4128 |
. . . . 5
|
| 11 | 8, 10 | eqtrdi 2245 |
. . . 4
|
| 12 | fmptcof.3 |
. . . . 5
| |
| 13 | nfcv 2339 |
. . . . . 6
| |
| 14 | nfcsb1v 3117 |
. . . . . 6
| |
| 15 | csbeq1a 3093 |
. . . . . 6
| |
| 16 | 13, 14, 15 | cbvmpt 4128 |
. . . . 5
|
| 17 | 12, 16 | eqtrdi 2245 |
. . . 4
|
| 18 | csbeq1 3087 |
. . . 4
| |
| 19 | 7, 11, 17, 18 | fmptco 5728 |
. . 3
|
| 20 | nfcv 2339 |
. . . 4
| |
| 21 | nfcv 2339 |
. . . . 5
| |
| 22 | 2, 21 | nfcsb 3122 |
. . . 4
|
| 23 | 4 | csbeq1d 3091 |
. . . 4
|
| 24 | 20, 22, 23 | cbvmpt 4128 |
. . 3
|
| 25 | 19, 24 | eqtr4di 2247 |
. 2
|
| 26 | eqid 2196 |
. . . 4
| |
| 27 | nfcvd 2340 |
. . . . . 6
| |
| 28 | fmptcof.4 |
. . . . . 6
| |
| 29 | 27, 28 | csbiegf 3128 |
. . . . 5
|
| 30 | 29 | ralimi 2560 |
. . . 4
|
| 31 | mpteq12 4116 |
. . . 4
| |
| 32 | 26, 30, 31 | sylancr 414 |
. . 3
|
| 33 | 1, 32 | syl 14 |
. 2
|
| 34 | 25, 33 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 |
| This theorem is referenced by: fmptcos 5730 cncfmpt1f 14834 sincn 15005 coscn 15006 lgseisenlem3 15313 |
| Copyright terms: Public domain | W3C validator |