ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptv Unicode version

Theorem mptv 4181
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
Distinct variable groups:    x, y    y, B
Allowed substitution hint:    B( x)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 4147 . 2  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  ( x  e.  _V  /\  y  =  B ) }
2 vex 2802 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( y  =  B  <->  ( x  e.  _V  /\  y  =  B ) )
43opabbii 4151 . 2  |-  { <. x ,  y >.  |  y  =  B }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  y  =  B ) }
51, 4eqtr4i 2253 1  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   {copab 4144    |-> cmpt 4145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-opab 4146  df-mpt 4147
This theorem is referenced by:  df1st2  6365  df2nd2  6366  hashennn  11002  cnmptid  14955
  Copyright terms: Public domain W3C validator