ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptv Unicode version

Theorem mptv 4130
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
Distinct variable groups:    x, y    y, B
Allowed substitution hint:    B( x)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 4096 . 2  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  ( x  e.  _V  /\  y  =  B ) }
2 vex 2766 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( y  =  B  <->  ( x  e.  _V  /\  y  =  B ) )
43opabbii 4100 . 2  |-  { <. x ,  y >.  |  y  =  B }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  y  =  B ) }
51, 4eqtr4i 2220 1  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   {copab 4093    |-> cmpt 4094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-opab 4095  df-mpt 4096
This theorem is referenced by:  df1st2  6277  df2nd2  6278  hashennn  10872  cnmptid  14517
  Copyright terms: Public domain W3C validator