ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptv Unicode version

Theorem mptv 4079
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
Distinct variable groups:    x, y    y, B
Allowed substitution hint:    B( x)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 4045 . 2  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  ( x  e.  _V  /\  y  =  B ) }
2 vex 2729 . . . 4  |-  x  e. 
_V
32biantrur 301 . . 3  |-  ( y  =  B  <->  ( x  e.  _V  /\  y  =  B ) )
43opabbii 4049 . 2  |-  { <. x ,  y >.  |  y  =  B }  =  { <. x ,  y
>.  |  ( x  e.  _V  /\  y  =  B ) }
51, 4eqtr4i 2189 1  |-  ( x  e.  _V  |->  B )  =  { <. x ,  y >.  |  y  =  B }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   {copab 4042    |-> cmpt 4043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728  df-opab 4044  df-mpt 4045
This theorem is referenced by:  df1st2  6187  df2nd2  6188  hashennn  10693  cnmptid  12921
  Copyright terms: Public domain W3C validator