| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 |
|
| Ref | Expression |
|---|---|
| cbvmptv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 |
. 2
| |
| 2 | nfcv 2372 |
. 2
| |
| 3 | cbvmptv.1 |
. 2
| |
| 4 | 1, 2, 3 | cbvmpt 4178 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: fnmptfvd 5738 frecsuc 6551 pw2f1odclem 6991 xpmapen 7007 omp1eom 7258 fodjuomni 7312 fodjumkv 7323 nninfwlporlemd 7335 nninfwlpor 7337 nninfwlpoim 7342 nninfinfwlpo 7343 caucvgsrlembnd 7984 negiso 9098 infrenegsupex 9785 frec2uzsucd 10618 frecuzrdgdom 10635 frecuzrdgfun 10637 frecuzrdgsuct 10641 0tonninf 10657 1tonninf 10658 seq3f1oleml 10733 seq3f1o 10734 hashfz1 11000 xrnegiso 11768 infxrnegsupex 11769 climcvg1n 11856 summodc 11889 zsumdc 11890 fsum3 11893 fsumadd 11912 prodmodc 12084 zproddc 12085 fprodseq 12089 phimullem 12742 eulerthlemh 12748 eulerthlemth 12749 ennnfonelemnn0 12988 ennnfonelemr 12989 ctinfom 12994 grplactcnv 13630 expcn 15237 cdivcncfap 15272 expcncf 15277 ivthdich 15321 plyadd 15419 plymul 15420 plyco 15427 plycjlemc 15428 plycj 15429 dvply2g 15434 lgseisenlem3 15745 2sqlem1 15787 bj-charfunbi 16132 subctctexmid 16325 nninfsellemqall 16340 nninfomni 16344 nninffeq 16345 exmidsbthrlem 16349 exmidsbthr 16350 isomninn 16358 iswomninn 16377 ismkvnn 16380 |
| Copyright terms: Public domain | W3C validator |