![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
Ref | Expression |
---|---|
cbvmptv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmptv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
3 | cbvmptv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | cbvmpt 4125 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-mpt 4093 |
This theorem is referenced by: fnmptfvd 5663 frecsuc 6462 pw2f1odclem 6892 xpmapen 6908 omp1eom 7156 fodjuomni 7210 fodjumkv 7221 nninfwlporlemd 7233 nninfwlpor 7235 nninfwlpoim 7239 caucvgsrlembnd 7863 negiso 8976 infrenegsupex 9662 frec2uzsucd 10475 frecuzrdgdom 10492 frecuzrdgfun 10494 frecuzrdgsuct 10498 0tonninf 10514 1tonninf 10515 seq3f1oleml 10590 seq3f1o 10591 hashfz1 10857 xrnegiso 11408 infxrnegsupex 11409 climcvg1n 11496 summodc 11529 zsumdc 11530 fsum3 11533 fsumadd 11552 prodmodc 11724 zproddc 11725 fprodseq 11729 phimullem 12366 eulerthlemh 12372 eulerthlemth 12373 ennnfonelemnn0 12582 ennnfonelemr 12583 ctinfom 12588 grplactcnv 13177 expcn 14748 cdivcncfap 14783 expcncf 14788 ivthdich 14832 plyadd 14930 plymul 14931 plyco 14937 plycjlemc 14938 plycj 14939 lgseisenlem3 15229 2sqlem1 15271 bj-charfunbi 15373 subctctexmid 15561 nninfsellemqall 15575 nninfomni 15579 nninffeq 15580 exmidsbthrlem 15582 exmidsbthr 15583 isomninn 15591 iswomninn 15610 ismkvnn 15613 |
Copyright terms: Public domain | W3C validator |