![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
Ref | Expression |
---|---|
cbvmptv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmptv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2336 |
. 2
![]() ![]() ![]() ![]() | |
3 | cbvmptv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | cbvmpt 4124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-opab 4091 df-mpt 4092 |
This theorem is referenced by: fnmptfvd 5662 frecsuc 6460 pw2f1odclem 6890 xpmapen 6906 omp1eom 7154 fodjuomni 7208 fodjumkv 7219 nninfwlporlemd 7231 nninfwlpor 7233 nninfwlpoim 7237 caucvgsrlembnd 7861 negiso 8974 infrenegsupex 9659 frec2uzsucd 10472 frecuzrdgdom 10489 frecuzrdgfun 10491 frecuzrdgsuct 10495 0tonninf 10511 1tonninf 10512 seq3f1oleml 10587 seq3f1o 10588 hashfz1 10854 xrnegiso 11405 infxrnegsupex 11406 climcvg1n 11493 summodc 11526 zsumdc 11527 fsum3 11530 fsumadd 11549 prodmodc 11721 zproddc 11722 fprodseq 11726 phimullem 12363 eulerthlemh 12369 eulerthlemth 12370 ennnfonelemnn0 12579 ennnfonelemr 12580 ctinfom 12585 grplactcnv 13174 cdivcncfap 14758 expcncf 14763 ivthdich 14807 plyadd 14897 plymul 14898 lgseisenlem3 15188 2sqlem1 15201 bj-charfunbi 15303 subctctexmid 15491 nninfsellemqall 15505 nninfomni 15509 nninffeq 15510 exmidsbthrlem 15512 exmidsbthr 15513 isomninn 15521 iswomninn 15540 ismkvnn 15543 |
Copyright terms: Public domain | W3C validator |