![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
Ref | Expression |
---|---|
cbvmptv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmptv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2319 |
. 2
![]() ![]() ![]() ![]() | |
3 | cbvmptv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | cbvmpt 4098 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-opab 4065 df-mpt 4066 |
This theorem is referenced by: fnmptfvd 5620 frecsuc 6407 xpmapen 6849 omp1eom 7093 fodjuomni 7146 fodjumkv 7157 nninfwlporlemd 7169 nninfwlpor 7171 nninfwlpoim 7175 caucvgsrlembnd 7799 negiso 8910 infrenegsupex 9592 frec2uzsucd 10398 frecuzrdgdom 10415 frecuzrdgfun 10417 frecuzrdgsuct 10421 0tonninf 10436 1tonninf 10437 seq3f1oleml 10500 seq3f1o 10501 hashfz1 10758 xrnegiso 11265 infxrnegsupex 11266 climcvg1n 11353 summodc 11386 zsumdc 11387 fsum3 11390 fsumadd 11409 prodmodc 11581 zproddc 11582 fprodseq 11586 phimullem 12219 eulerthlemh 12225 eulerthlemth 12226 ennnfonelemnn0 12417 ennnfonelemr 12418 ctinfom 12423 grplactcnv 12926 cdivcncfap 13980 expcncf 13985 2sqlem1 14343 bj-charfunbi 14445 subctctexmid 14632 nninfsellemqall 14646 nninfomni 14650 nninffeq 14651 exmidsbthrlem 14652 exmidsbthr 14653 isomninn 14661 iswomninn 14680 ismkvnn 14683 |
Copyright terms: Public domain | W3C validator |