| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 |
|
| Ref | Expression |
|---|---|
| cbvmptv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 |
. 2
| |
| 2 | nfcv 2347 |
. 2
| |
| 3 | cbvmptv.1 |
. 2
| |
| 4 | 1, 2, 3 | cbvmpt 4138 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-mpt 4106 |
| This theorem is referenced by: fnmptfvd 5683 frecsuc 6492 pw2f1odclem 6930 xpmapen 6946 omp1eom 7196 fodjuomni 7250 fodjumkv 7261 nninfwlporlemd 7273 nninfwlpor 7275 nninfwlpoim 7280 nninfinfwlpo 7281 caucvgsrlembnd 7913 negiso 9027 infrenegsupex 9714 frec2uzsucd 10544 frecuzrdgdom 10561 frecuzrdgfun 10563 frecuzrdgsuct 10567 0tonninf 10583 1tonninf 10584 seq3f1oleml 10659 seq3f1o 10660 hashfz1 10926 xrnegiso 11544 infxrnegsupex 11545 climcvg1n 11632 summodc 11665 zsumdc 11666 fsum3 11669 fsumadd 11688 prodmodc 11860 zproddc 11861 fprodseq 11865 phimullem 12518 eulerthlemh 12524 eulerthlemth 12525 ennnfonelemnn0 12764 ennnfonelemr 12765 ctinfom 12770 grplactcnv 13405 expcn 15012 cdivcncfap 15047 expcncf 15052 ivthdich 15096 plyadd 15194 plymul 15195 plyco 15202 plycjlemc 15203 plycj 15204 dvply2g 15209 lgseisenlem3 15520 2sqlem1 15562 bj-charfunbi 15709 subctctexmid 15899 nninfsellemqall 15914 nninfomni 15918 nninffeq 15919 exmidsbthrlem 15923 exmidsbthr 15924 isomninn 15932 iswomninn 15951 ismkvnn 15954 |
| Copyright terms: Public domain | W3C validator |