| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 |
|
| Ref | Expression |
|---|---|
| cbvmptv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. 2
| |
| 2 | nfcv 2348 |
. 2
| |
| 3 | cbvmptv.1 |
. 2
| |
| 4 | 1, 2, 3 | cbvmpt 4139 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-mpt 4107 |
| This theorem is referenced by: fnmptfvd 5684 frecsuc 6493 pw2f1odclem 6931 xpmapen 6947 omp1eom 7197 fodjuomni 7251 fodjumkv 7262 nninfwlporlemd 7274 nninfwlpor 7276 nninfwlpoim 7281 nninfinfwlpo 7282 caucvgsrlembnd 7914 negiso 9028 infrenegsupex 9715 frec2uzsucd 10546 frecuzrdgdom 10563 frecuzrdgfun 10565 frecuzrdgsuct 10569 0tonninf 10585 1tonninf 10586 seq3f1oleml 10661 seq3f1o 10662 hashfz1 10928 xrnegiso 11573 infxrnegsupex 11574 climcvg1n 11661 summodc 11694 zsumdc 11695 fsum3 11698 fsumadd 11717 prodmodc 11889 zproddc 11890 fprodseq 11894 phimullem 12547 eulerthlemh 12553 eulerthlemth 12554 ennnfonelemnn0 12793 ennnfonelemr 12794 ctinfom 12799 grplactcnv 13434 expcn 15041 cdivcncfap 15076 expcncf 15081 ivthdich 15125 plyadd 15223 plymul 15224 plyco 15231 plycjlemc 15232 plycj 15233 dvply2g 15238 lgseisenlem3 15549 2sqlem1 15591 bj-charfunbi 15747 subctctexmid 15937 nninfsellemqall 15952 nninfomni 15956 nninffeq 15957 exmidsbthrlem 15961 exmidsbthr 15962 isomninn 15970 iswomninn 15989 ismkvnn 15992 |
| Copyright terms: Public domain | W3C validator |