![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
Ref | Expression |
---|---|
cbvmptv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cbvmptv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2319 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfcv 2319 |
. 2
![]() ![]() ![]() ![]() | |
3 | cbvmptv.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | cbvmpt 4099 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-sn 3599 df-pr 3600 df-op 3602 df-opab 4066 df-mpt 4067 |
This theorem is referenced by: fnmptfvd 5621 frecsuc 6408 xpmapen 6850 omp1eom 7094 fodjuomni 7147 fodjumkv 7158 nninfwlporlemd 7170 nninfwlpor 7172 nninfwlpoim 7176 caucvgsrlembnd 7800 negiso 8912 infrenegsupex 9594 frec2uzsucd 10401 frecuzrdgdom 10418 frecuzrdgfun 10420 frecuzrdgsuct 10424 0tonninf 10439 1tonninf 10440 seq3f1oleml 10503 seq3f1o 10504 hashfz1 10763 xrnegiso 11270 infxrnegsupex 11271 climcvg1n 11358 summodc 11391 zsumdc 11392 fsum3 11395 fsumadd 11414 prodmodc 11586 zproddc 11587 fprodseq 11591 phimullem 12225 eulerthlemh 12231 eulerthlemth 12232 ennnfonelemnn0 12423 ennnfonelemr 12424 ctinfom 12429 grplactcnv 12972 cdivcncfap 14090 expcncf 14095 2sqlem1 14464 bj-charfunbi 14566 subctctexmid 14753 nninfsellemqall 14767 nninfomni 14771 nninffeq 14772 exmidsbthrlem 14773 exmidsbthr 14774 isomninn 14782 iswomninn 14801 ismkvnn 14804 |
Copyright terms: Public domain | W3C validator |