| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmptv | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| cbvmptv.1 |
|
| Ref | Expression |
|---|---|
| cbvmptv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 |
. 2
| |
| 2 | nfcv 2350 |
. 2
| |
| 3 | cbvmptv.1 |
. 2
| |
| 4 | 1, 2, 3 | cbvmpt 4155 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-mpt 4123 |
| This theorem is referenced by: fnmptfvd 5707 frecsuc 6516 pw2f1odclem 6956 xpmapen 6972 omp1eom 7223 fodjuomni 7277 fodjumkv 7288 nninfwlporlemd 7300 nninfwlpor 7302 nninfwlpoim 7307 nninfinfwlpo 7308 caucvgsrlembnd 7949 negiso 9063 infrenegsupex 9750 frec2uzsucd 10583 frecuzrdgdom 10600 frecuzrdgfun 10602 frecuzrdgsuct 10606 0tonninf 10622 1tonninf 10623 seq3f1oleml 10698 seq3f1o 10699 hashfz1 10965 xrnegiso 11688 infxrnegsupex 11689 climcvg1n 11776 summodc 11809 zsumdc 11810 fsum3 11813 fsumadd 11832 prodmodc 12004 zproddc 12005 fprodseq 12009 phimullem 12662 eulerthlemh 12668 eulerthlemth 12669 ennnfonelemnn0 12908 ennnfonelemr 12909 ctinfom 12914 grplactcnv 13549 expcn 15156 cdivcncfap 15191 expcncf 15196 ivthdich 15240 plyadd 15338 plymul 15339 plyco 15346 plycjlemc 15347 plycj 15348 dvply2g 15353 lgseisenlem3 15664 2sqlem1 15706 bj-charfunbi 15946 subctctexmid 16139 nninfsellemqall 16154 nninfomni 16158 nninffeq 16159 exmidsbthrlem 16163 exmidsbthr 16164 isomninn 16172 iswomninn 16191 ismkvnn 16194 |
| Copyright terms: Public domain | W3C validator |