ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptid Unicode version

Theorem cnmptid 14786
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
Assertion
Ref Expression
cnmptid  |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
Distinct variable groups:    ph, x    x, J    x, X

Proof of Theorem cnmptid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 equcom 1729 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
21opabbii 4112 . . . . 5  |-  { <. x ,  y >.  |  x  =  y }  =  { <. x ,  y
>.  |  y  =  x }
3 df-id 4341 . . . . 5  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
4 mptv 4142 . . . . 5  |-  ( x  e.  _V  |->  x )  =  { <. x ,  y >.  |  y  =  x }
52, 3, 43eqtr4i 2236 . . . 4  |-  _I  =  ( x  e.  _V  |->  x )
65reseq1i 4956 . . 3  |-  (  _I  |`  X )  =  ( ( x  e.  _V  |->  x )  |`  X )
7 ssv 3215 . . . 4  |-  X  C_  _V
8 resmpt 5008 . . . 4  |-  ( X 
C_  _V  ->  ( ( x  e.  _V  |->  x )  |`  X )  =  ( x  e.  X  |->  x ) )
97, 8ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  x )  |`  X )  =  ( x  e.  X  |->  x )
106, 9eqtri 2226 . 2  |-  (  _I  |`  X )  =  ( x  e.  X  |->  x )
11 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
12 idcn 14717 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
1311, 12syl 14 . 2  |-  ( ph  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
1410, 13eqeltrrid 2293 1  |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {copab 4105    |-> cmpt 4106    _I cid 4336    |` cres 4678   ` cfv 5272  (class class class)co 5946  TopOnctopon 14515    Cn ccn 14690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-top 14503  df-topon 14516  df-cn 14693
This theorem is referenced by:  imasnopn  14804  expcn  15074
  Copyright terms: Public domain W3C validator