ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptid Unicode version

Theorem cnmptid 14868
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
Assertion
Ref Expression
cnmptid  |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
Distinct variable groups:    ph, x    x, J    x, X

Proof of Theorem cnmptid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 equcom 1730 . . . . . 6  |-  ( x  =  y  <->  y  =  x )
21opabbii 4127 . . . . 5  |-  { <. x ,  y >.  |  x  =  y }  =  { <. x ,  y
>.  |  y  =  x }
3 df-id 4358 . . . . 5  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
4 mptv 4157 . . . . 5  |-  ( x  e.  _V  |->  x )  =  { <. x ,  y >.  |  y  =  x }
52, 3, 43eqtr4i 2238 . . . 4  |-  _I  =  ( x  e.  _V  |->  x )
65reseq1i 4974 . . 3  |-  (  _I  |`  X )  =  ( ( x  e.  _V  |->  x )  |`  X )
7 ssv 3223 . . . 4  |-  X  C_  _V
8 resmpt 5026 . . . 4  |-  ( X 
C_  _V  ->  ( ( x  e.  _V  |->  x )  |`  X )  =  ( x  e.  X  |->  x ) )
97, 8ax-mp 5 . . 3  |-  ( ( x  e.  _V  |->  x )  |`  X )  =  ( x  e.  X  |->  x )
106, 9eqtri 2228 . 2  |-  (  _I  |`  X )  =  ( x  e.  X  |->  x )
11 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
12 idcn 14799 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
1311, 12syl 14 . 2  |-  ( ph  ->  (  _I  |`  X )  e.  ( J  Cn  J ) )
1410, 13eqeltrrid 2295 1  |-  ( ph  ->  ( x  e.  X  |->  x )  e.  ( J  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   {copab 4120    |-> cmpt 4121    _I cid 4353    |` cres 4695   ` cfv 5290  (class class class)co 5967  TopOnctopon 14597    Cn ccn 14772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775
This theorem is referenced by:  imasnopn  14886  expcn  15156
  Copyright terms: Public domain W3C validator