Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmptid | Unicode version |
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | TopOn |
Ref | Expression |
---|---|
cnmptid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom 1686 | . . . . . 6 | |
2 | 1 | opabbii 4031 | . . . . 5 |
3 | df-id 4252 | . . . . 5 | |
4 | mptv 4061 | . . . . 5 | |
5 | 2, 3, 4 | 3eqtr4i 2188 | . . . 4 |
6 | 5 | reseq1i 4859 | . . 3 |
7 | ssv 3150 | . . . 4 | |
8 | resmpt 4911 | . . . 4 | |
9 | 7, 8 | ax-mp 5 | . . 3 |
10 | 6, 9 | eqtri 2178 | . 2 |
11 | cnmptid.j | . . 3 TopOn | |
12 | idcn 12572 | . . 3 TopOn | |
13 | 11, 12 | syl 14 | . 2 |
14 | 10, 13 | eqeltrrid 2245 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 cvv 2712 wss 3102 copab 4024 cmpt 4025 cid 4247 cres 4585 cfv 5167 (class class class)co 5818 TopOnctopon 12368 ccn 12545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-map 6588 df-top 12356 df-topon 12369 df-cn 12548 |
This theorem is referenced by: imasnopn 12659 |
Copyright terms: Public domain | W3C validator |