ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbii Unicode version

Theorem opabbii 4151
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.)
Hypothesis
Ref Expression
opabbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
opabbii  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }

Proof of Theorem opabbii
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  z  =  z
2 opabbii.1 . . . 4  |-  ( ph  <->  ps )
32a1i 9 . . 3  |-  ( z  =  z  ->  ( ph 
<->  ps ) )
43opabbidv 4150 . 2  |-  ( z  =  z  ->  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps } )
51, 4ax-mp 5 1  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   {copab 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-opab 4146
This theorem is referenced by:  mptv  4181  fconstmpt  4766  xpundi  4775  xpundir  4776  inxp  4856  cnvco  4907  resopab  5049  opabresid  5058  cnvi  5133  cnvun  5134  cnvin  5136  cnvxp  5147  cnvcnv3  5178  coundi  5230  coundir  5231  mptun  5455  fvopab6  5731  cbvoprab1  6076  cbvoprab12  6078  dmoprabss  6086  mpomptx  6095  resoprab  6100  ov6g  6143  dfoprab3s  6336  dfoprab3  6337  dfoprab4  6338  mapsncnv  6842  xpcomco  6985  dmaddpq  7566  dmmulpq  7567  recmulnqg  7578  enq0enq  7618  ltrelxr  8207  ltxr  9971  shftidt2  11343  prdsex  13302  prdsval  13306  prdsbaslemss  13307  releqgg  13757  eqgex  13758  dvdsrzring  14567  lmfval  14867  lmbr  14887  cnmptid  14955  lgsquadlem3  15758  wksfval  16035
  Copyright terms: Public domain W3C validator