![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbii | Unicode version |
Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
Ref | Expression |
---|---|
opabbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
opabbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
2 | opabbii.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | opabbidv 4096 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-opab 4092 |
This theorem is referenced by: mptv 4127 fconstmpt 4707 xpundi 4716 xpundir 4717 inxp 4797 cnvco 4848 resopab 4987 opabresid 4996 cnvi 5071 cnvun 5072 cnvin 5074 cnvxp 5085 cnvcnv3 5116 coundi 5168 coundir 5169 mptun 5386 fvopab6 5655 cbvoprab1 5991 cbvoprab12 5993 dmoprabss 6001 mpomptx 6010 resoprab 6015 ov6g 6058 dfoprab3s 6245 dfoprab3 6246 dfoprab4 6247 mapsncnv 6751 xpcomco 6882 dmaddpq 7441 dmmulpq 7442 recmulnqg 7453 enq0enq 7493 ltrelxr 8082 ltxr 9844 shftidt2 10979 prdsex 12883 releqgg 13293 eqgex 13294 dvdsrzring 14102 lmfval 14371 lmbr 14392 cnmptid 14460 lgsquadlem3 15236 |
Copyright terms: Public domain | W3C validator |