| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 |
|
| Ref | Expression |
|---|---|
| opabbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 |
. 2
| |
| 2 | opabbii.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | 3 | opabbidv 4110 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-opab 4106 |
| This theorem is referenced by: mptv 4141 fconstmpt 4722 xpundi 4731 xpundir 4732 inxp 4812 cnvco 4863 resopab 5003 opabresid 5012 cnvi 5087 cnvun 5088 cnvin 5090 cnvxp 5101 cnvcnv3 5132 coundi 5184 coundir 5185 mptun 5407 fvopab6 5676 cbvoprab1 6017 cbvoprab12 6019 dmoprabss 6027 mpomptx 6036 resoprab 6041 ov6g 6084 dfoprab3s 6276 dfoprab3 6277 dfoprab4 6278 mapsncnv 6782 xpcomco 6921 dmaddpq 7492 dmmulpq 7493 recmulnqg 7504 enq0enq 7544 ltrelxr 8133 ltxr 9897 shftidt2 11143 prdsex 13101 prdsval 13105 prdsbaslemss 13106 releqgg 13556 eqgex 13557 dvdsrzring 14365 lmfval 14664 lmbr 14685 cnmptid 14753 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |