| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opabbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) | 
| Ref | Expression | 
|---|---|
| opabbii.1 | 
 | 
| Ref | Expression | 
|---|---|
| opabbii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | 
. 2
 | |
| 2 | opabbii.1 | 
. . . 4
 | |
| 3 | 2 | a1i 9 | 
. . 3
 | 
| 4 | 3 | opabbidv 4099 | 
. 2
 | 
| 5 | 1, 4 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-opab 4095 | 
| This theorem is referenced by: mptv 4130 fconstmpt 4710 xpundi 4719 xpundir 4720 inxp 4800 cnvco 4851 resopab 4990 opabresid 4999 cnvi 5074 cnvun 5075 cnvin 5077 cnvxp 5088 cnvcnv3 5119 coundi 5171 coundir 5172 mptun 5389 fvopab6 5658 cbvoprab1 5994 cbvoprab12 5996 dmoprabss 6004 mpomptx 6013 resoprab 6018 ov6g 6061 dfoprab3s 6248 dfoprab3 6249 dfoprab4 6250 mapsncnv 6754 xpcomco 6885 dmaddpq 7446 dmmulpq 7447 recmulnqg 7458 enq0enq 7498 ltrelxr 8087 ltxr 9850 shftidt2 10997 prdsex 12940 releqgg 13350 eqgex 13351 dvdsrzring 14159 lmfval 14428 lmbr 14449 cnmptid 14517 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |