| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 |
|
| Ref | Expression |
|---|---|
| opabbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2207 |
. 2
| |
| 2 | opabbii.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | 3 | opabbidv 4126 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-opab 4122 |
| This theorem is referenced by: mptv 4157 fconstmpt 4740 xpundi 4749 xpundir 4750 inxp 4830 cnvco 4881 resopab 5022 opabresid 5031 cnvi 5106 cnvun 5107 cnvin 5109 cnvxp 5120 cnvcnv3 5151 coundi 5203 coundir 5204 mptun 5427 fvopab6 5699 cbvoprab1 6040 cbvoprab12 6042 dmoprabss 6050 mpomptx 6059 resoprab 6064 ov6g 6107 dfoprab3s 6299 dfoprab3 6300 dfoprab4 6301 mapsncnv 6805 xpcomco 6946 dmaddpq 7527 dmmulpq 7528 recmulnqg 7539 enq0enq 7579 ltrelxr 8168 ltxr 9932 shftidt2 11258 prdsex 13216 prdsval 13220 prdsbaslemss 13221 releqgg 13671 eqgex 13672 dvdsrzring 14480 lmfval 14779 lmbr 14800 cnmptid 14868 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |