| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbii | Unicode version | ||
| Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
| Ref | Expression |
|---|---|
| opabbii.1 |
|
| Ref | Expression |
|---|---|
| opabbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 |
. 2
| |
| 2 | opabbii.1 |
. . . 4
| |
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | 3 | opabbidv 4150 |
. 2
|
| 5 | 1, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-opab 4146 |
| This theorem is referenced by: mptv 4181 fconstmpt 4766 xpundi 4775 xpundir 4776 inxp 4856 cnvco 4907 resopab 5049 opabresid 5058 cnvi 5133 cnvun 5134 cnvin 5136 cnvxp 5147 cnvcnv3 5178 coundi 5230 coundir 5231 mptun 5455 fvopab6 5731 cbvoprab1 6076 cbvoprab12 6078 dmoprabss 6086 mpomptx 6095 resoprab 6100 ov6g 6143 dfoprab3s 6336 dfoprab3 6337 dfoprab4 6338 mapsncnv 6842 xpcomco 6985 dmaddpq 7566 dmmulpq 7567 recmulnqg 7578 enq0enq 7618 ltrelxr 8207 ltxr 9971 shftidt2 11343 prdsex 13302 prdsval 13306 prdsbaslemss 13307 releqgg 13757 eqgex 13758 dvdsrzring 14567 lmfval 14867 lmbr 14887 cnmptid 14955 lgsquadlem3 15758 wksfval 16035 |
| Copyright terms: Public domain | W3C validator |