ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 Unicode version

Theorem df1st2 6222
Description: An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df1st2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo1st 6160 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5442 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
3 dffn5im 5563 . . . . 5  |-  ( 1st 
Fn  _V  ->  1st  =  ( w  e.  _V  |->  ( 1st `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  1st  =  ( w  e.  _V  |->  ( 1st `  w ) )
5 mptv 4102 . . . 4  |-  ( w  e.  _V  |->  ( 1st `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
64, 5eqtri 2198 . . 3  |-  1st  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
76reseq1i 4905 . 2  |-  ( 1st  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 4953 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 1st `  w ) ) }
9 vex 2742 . . . . 5  |-  x  e. 
_V
10 vex 2742 . . . . 5  |-  y  e. 
_V
119, 10op1std 6151 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 1st `  w
)  =  x )
1211eqeq2d 2189 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 1st `  w
)  <->  z  =  x ) )
1312dfoprab3 6194 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 1st `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  x }
147, 8, 133eqtrri 2203 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597   {copab 4065    |-> cmpt 4066    X. cxp 4626    |` cres 4630    Fn wfn 5213   -onto->wfo 5216   ` cfv 5218   {coprab 5878   1stc1st 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-oprab 5881  df-1st 6143  df-2nd 6144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator