ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 Unicode version

Theorem df1st2 6195
Description: An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df1st2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo1st 6133 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5420 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
3 dffn5im 5540 . . . . 5  |-  ( 1st 
Fn  _V  ->  1st  =  ( w  e.  _V  |->  ( 1st `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  1st  =  ( w  e.  _V  |->  ( 1st `  w ) )
5 mptv 4084 . . . 4  |-  ( w  e.  _V  |->  ( 1st `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
64, 5eqtri 2191 . . 3  |-  1st  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
76reseq1i 4885 . 2  |-  ( 1st  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 4933 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 1st `  w ) ) }
9 vex 2733 . . . . 5  |-  x  e. 
_V
10 vex 2733 . . . . 5  |-  y  e. 
_V
119, 10op1std 6124 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 1st `  w
)  =  x )
1211eqeq2d 2182 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 1st `  w
)  <->  z  =  x ) )
1312dfoprab3 6167 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 1st `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  x }
147, 8, 133eqtrri 2196 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730   <.cop 3584   {copab 4047    |-> cmpt 4048    X. cxp 4607    |` cres 4611    Fn wfn 5191   -onto->wfo 5194   ` cfv 5196   {coprab 5851   1stc1st 6114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fo 5202  df-fv 5204  df-oprab 5854  df-1st 6116  df-2nd 6117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator