ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1st2 Unicode version

Theorem df1st2 6305
Description: An alternate possible definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df1st2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df1st2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo1st 6243 . . . . 5  |-  1st : _V -onto-> _V
2 fofn 5500 . . . . 5  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
3 dffn5im 5624 . . . . 5  |-  ( 1st 
Fn  _V  ->  1st  =  ( w  e.  _V  |->  ( 1st `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  1st  =  ( w  e.  _V  |->  ( 1st `  w ) )
5 mptv 4141 . . . 4  |-  ( w  e.  _V  |->  ( 1st `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
64, 5eqtri 2226 . . 3  |-  1st  =  { <. w ,  z
>.  |  z  =  ( 1st `  w ) }
76reseq1i 4955 . 2  |-  ( 1st  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 5003 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 1st `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 1st `  w ) ) }
9 vex 2775 . . . . 5  |-  x  e. 
_V
10 vex 2775 . . . . 5  |-  y  e. 
_V
119, 10op1std 6234 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 1st `  w
)  =  x )
1211eqeq2d 2217 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 1st `  w
)  <->  z  =  x ) )
1312dfoprab3 6277 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 1st `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  x }
147, 8, 133eqtrri 2231 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( 1st  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636   {copab 4104    |-> cmpt 4105    X. cxp 4673    |` cres 4677    Fn wfn 5266   -onto->wfo 5269   ` cfv 5271   {coprab 5945   1stc1st 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-oprab 5948  df-1st 6226  df-2nd 6227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator