ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 Unicode version

Theorem df2nd2 6364
Description: An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df2nd2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6302 . . . . 5  |-  2nd : _V -onto-> _V
2 fofn 5549 . . . . 5  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
3 dffn5im 5678 . . . . 5  |-  ( 2nd 
Fn  _V  ->  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) )
5 mptv 4180 . . . 4  |-  ( w  e.  _V  |->  ( 2nd `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
64, 5eqtri 2250 . . 3  |-  2nd  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
76reseq1i 5000 . 2  |-  ( 2nd  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 5048 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 2nd `  w ) ) }
9 vex 2802 . . . . 5  |-  x  e. 
_V
10 vex 2802 . . . . 5  |-  y  e. 
_V
119, 10op2ndd 6293 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 2nd `  w
)  =  y )
1211eqeq2d 2241 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 2nd `  w
)  <->  z  =  y ) )
1312dfoprab3 6335 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 2nd `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  y }
147, 8, 133eqtrri 2255 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   {copab 4143    |-> cmpt 4144    X. cxp 4716    |` cres 4720    Fn wfn 5312   -onto->wfo 5315   ` cfv 5317   {coprab 6001   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325  df-oprab 6004  df-1st 6284  df-2nd 6285
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator