ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 Unicode version

Theorem df2nd2 6329
Description: An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df2nd2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6267 . . . . 5  |-  2nd : _V -onto-> _V
2 fofn 5522 . . . . 5  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
3 dffn5im 5647 . . . . 5  |-  ( 2nd 
Fn  _V  ->  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) )
5 mptv 4157 . . . 4  |-  ( w  e.  _V  |->  ( 2nd `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
64, 5eqtri 2228 . . 3  |-  2nd  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
76reseq1i 4974 . 2  |-  ( 2nd  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 5022 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 2nd `  w ) ) }
9 vex 2779 . . . . 5  |-  x  e. 
_V
10 vex 2779 . . . . 5  |-  y  e. 
_V
119, 10op2ndd 6258 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 2nd `  w
)  =  y )
1211eqeq2d 2219 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 2nd `  w
)  <->  z  =  y ) )
1312dfoprab3 6300 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 2nd `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  y }
147, 8, 133eqtrri 2233 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776   <.cop 3646   {copab 4120    |-> cmpt 4121    X. cxp 4691    |` cres 4695    Fn wfn 5285   -onto->wfo 5288   ` cfv 5290   {coprab 5968   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-oprab 5971  df-1st 6249  df-2nd 6250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator