ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 Unicode version

Theorem df2nd2 6305
Description: An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df2nd2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6243 . . . . 5  |-  2nd : _V -onto-> _V
2 fofn 5499 . . . . 5  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
3 dffn5im 5623 . . . . 5  |-  ( 2nd 
Fn  _V  ->  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) )
5 mptv 4140 . . . 4  |-  ( w  e.  _V  |->  ( 2nd `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
64, 5eqtri 2225 . . 3  |-  2nd  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
76reseq1i 4954 . 2  |-  ( 2nd  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 5002 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 2nd `  w ) ) }
9 vex 2774 . . . . 5  |-  x  e. 
_V
10 vex 2774 . . . . 5  |-  y  e. 
_V
119, 10op2ndd 6234 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 2nd `  w
)  =  y )
1211eqeq2d 2216 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 2nd `  w
)  <->  z  =  y ) )
1312dfoprab3 6276 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 2nd `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  y }
147, 8, 133eqtrri 2230 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771   <.cop 3635   {copab 4103    |-> cmpt 4104    X. cxp 4672    |` cres 4676    Fn wfn 5265   -onto->wfo 5268   ` cfv 5270   {coprab 5944   2ndc2nd 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fo 5276  df-fv 5278  df-oprab 5947  df-1st 6225  df-2nd 6226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator