ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2nd2 Unicode version

Theorem df2nd2 6188
Description: An alternate possible definition of the  2nd function. (Contributed by NM, 10-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
df2nd2  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Distinct variable group:    x, y, z

Proof of Theorem df2nd2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fo2nd 6126 . . . . 5  |-  2nd : _V -onto-> _V
2 fofn 5412 . . . . 5  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
3 dffn5im 5532 . . . . 5  |-  ( 2nd 
Fn  _V  ->  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) ) )
41, 2, 3mp2b 8 . . . 4  |-  2nd  =  ( w  e.  _V  |->  ( 2nd `  w ) )
5 mptv 4079 . . . 4  |-  ( w  e.  _V  |->  ( 2nd `  w ) )  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
64, 5eqtri 2186 . . 3  |-  2nd  =  { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }
76reseq1i 4880 . 2  |-  ( 2nd  |`  ( _V  X.  _V ) )  =  ( { <. w ,  z
>.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )
8 resopab 4928 . 2  |-  ( {
<. w ,  z >.  |  z  =  ( 2nd `  w ) }  |`  ( _V  X.  _V ) )  =  { <. w ,  z >.  |  ( w  e.  ( _V  X.  _V )  /\  z  =  ( 2nd `  w ) ) }
9 vex 2729 . . . . 5  |-  x  e. 
_V
10 vex 2729 . . . . 5  |-  y  e. 
_V
119, 10op2ndd 6117 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( 2nd `  w
)  =  y )
1211eqeq2d 2177 . . 3  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( 2nd `  w
)  <->  z  =  y ) )
1312dfoprab3 6159 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  z  =  ( 2nd `  w
) ) }  =  { <. <. x ,  y
>. ,  z >.  |  z  =  y }
147, 8, 133eqtrri 2191 1  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  y }  =  ( 2nd  |`  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   <.cop 3579   {copab 4042    |-> cmpt 4043    X. cxp 4602    |` cres 4606    Fn wfn 5183   -onto->wfo 5186   ` cfv 5188   {coprab 5843   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-oprab 5846  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator