ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptv GIF version

Theorem mptv 3927
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 3893 . 2 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
2 vex 2622 . . . 4 𝑥 ∈ V
32biantrur 297 . . 3 (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵))
43opabbii 3897 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
51, 4eqtr4i 2111 1 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1289  wcel 1438  Vcvv 2619  {copab 3890  cmpt 3891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621  df-opab 3892  df-mpt 3893
This theorem is referenced by:  df1st2  5966  df2nd2  5967  hashennn  10153
  Copyright terms: Public domain W3C validator