| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mptv | GIF version | ||
| Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
| Ref | Expression |
|---|---|
| mptv | ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4096 | . 2 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} | |
| 2 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 303 | . . 3 ⊢ (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵)) |
| 4 | 3 | opabbii 4100 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} |
| 5 | 1, 4 | eqtr4i 2220 | 1 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {copab 4093 ↦ cmpt 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-opab 4095 df-mpt 4096 |
| This theorem is referenced by: df1st2 6277 df2nd2 6278 hashennn 10872 cnmptid 14517 |
| Copyright terms: Public domain | W3C validator |