ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptv GIF version

Theorem mptv 4146
Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
Assertion
Ref Expression
mptv (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptv
StepHypRef Expression
1 df-mpt 4112 . 2 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
2 vex 2776 . . . 4 𝑥 ∈ V
32biantrur 303 . . 3 (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵))
43opabbii 4116 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)}
51, 4eqtr4i 2230 1 (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  {copab 4109  cmpt 4110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775  df-opab 4111  df-mpt 4112
This theorem is referenced by:  df1st2  6315  df2nd2  6316  hashennn  10938  cnmptid  14803
  Copyright terms: Public domain W3C validator