ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 Unicode version

Theorem dmsn0 5196
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0  |-  dom  { (/)
}  =  (/)

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4747 . . . 4  |-  -.  (/)  e.  ( _V  X.  _V )
2 dmsnm 5194 . . . 4  |-  ( (/)  e.  ( _V  X.  _V ) 
<->  E. x  x  e. 
dom  { (/) } )
31, 2mtbi 674 . . 3  |-  -.  E. x  x  e.  dom  {
(/) }
4 alnex 1545 . . 3  |-  ( A. x  -.  x  e.  dom  {
(/) }  <->  -.  E. x  x  e.  dom  { (/) } )
53, 4mpbir 146 . 2  |-  A. x  -.  x  e.  dom  {
(/) }
6 eq0 3510 . 2  |-  ( dom 
{ (/) }  =  (/)  <->  A. x  -.  x  e.  dom  {
(/) } )
75, 6mpbir 146 1  |-  dom  { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {csn 3666    X. cxp 4717   dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-dm 4729
This theorem is referenced by:  cnvsn0  5197  1st0  6290  2nd0  6291
  Copyright terms: Public domain W3C validator