ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 Unicode version

Theorem dmsn0 4898
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0  |-  dom  { (/)
}  =  (/)

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4465 . . . 4  |-  -.  (/)  e.  ( _V  X.  _V )
2 dmsnm 4896 . . . 4  |-  ( (/)  e.  ( _V  X.  _V ) 
<->  E. x  x  e. 
dom  { (/) } )
31, 2mtbi 630 . . 3  |-  -.  E. x  x  e.  dom  {
(/) }
4 alnex 1433 . . 3  |-  ( A. x  -.  x  e.  dom  {
(/) }  <->  -.  E. x  x  e.  dom  { (/) } )
53, 4mpbir 144 . 2  |-  A. x  -.  x  e.  dom  {
(/) }
6 eq0 3301 . 2  |-  ( dom 
{ (/) }  =  (/)  <->  A. x  -.  x  e.  dom  {
(/) } )
75, 6mpbir 144 1  |-  dom  { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1287    = wceq 1289   E.wex 1426    e. wcel 1438   _Vcvv 2619   (/)c0 3286   {csn 3446    X. cxp 4436   dom cdm 4438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-xp 4444  df-dm 4448
This theorem is referenced by:  cnvsn0  4899  1st0  5915  2nd0  5916
  Copyright terms: Public domain W3C validator