ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 Unicode version

Theorem dmsn0 5078
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0  |-  dom  { (/)
}  =  (/)

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4639 . . . 4  |-  -.  (/)  e.  ( _V  X.  _V )
2 dmsnm 5076 . . . 4  |-  ( (/)  e.  ( _V  X.  _V ) 
<->  E. x  x  e. 
dom  { (/) } )
31, 2mtbi 665 . . 3  |-  -.  E. x  x  e.  dom  {
(/) }
4 alnex 1492 . . 3  |-  ( A. x  -.  x  e.  dom  {
(/) }  <->  -.  E. x  x  e.  dom  { (/) } )
53, 4mpbir 145 . 2  |-  A. x  -.  x  e.  dom  {
(/) }
6 eq0 3433 . 2  |-  ( dom 
{ (/) }  =  (/)  <->  A. x  -.  x  e.  dom  {
(/) } )
75, 6mpbir 145 1  |-  dom  { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   (/)c0 3414   {csn 3583    X. cxp 4609   dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-dm 4621
This theorem is referenced by:  cnvsn0  5079  1st0  6123  2nd0  6124
  Copyright terms: Public domain W3C validator