ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmsn0 Unicode version

Theorem dmsn0 5137
Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
Assertion
Ref Expression
dmsn0  |-  dom  { (/)
}  =  (/)

Proof of Theorem dmsn0
StepHypRef Expression
1 0nelxp 4691 . . . 4  |-  -.  (/)  e.  ( _V  X.  _V )
2 dmsnm 5135 . . . 4  |-  ( (/)  e.  ( _V  X.  _V ) 
<->  E. x  x  e. 
dom  { (/) } )
31, 2mtbi 671 . . 3  |-  -.  E. x  x  e.  dom  {
(/) }
4 alnex 1513 . . 3  |-  ( A. x  -.  x  e.  dom  {
(/) }  <->  -.  E. x  x  e.  dom  { (/) } )
53, 4mpbir 146 . 2  |-  A. x  -.  x  e.  dom  {
(/) }
6 eq0 3469 . 2  |-  ( dom 
{ (/) }  =  (/)  <->  A. x  -.  x  e.  dom  {
(/) } )
75, 6mpbir 146 1  |-  dom  { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   (/)c0 3450   {csn 3622    X. cxp 4661   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-dm 4673
This theorem is referenced by:  cnvsn0  5138  1st0  6202  2nd0  6203
  Copyright terms: Public domain W3C validator