Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0xor Unicode version

Theorem trirec0xor 16186
Description: Version of trirec0 16185 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0xor  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Distinct variable group:    x, y, z

Proof of Theorem trirec0xor
StepHypRef Expression
1 trirec0 16185 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
2 1ne0 9139 . . . . . . . 8  |-  1  =/=  0
32nesymi 2424 . . . . . . 7  |-  -.  0  =  1
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  x  =  0 )
54oveq1d 5982 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  ( x  x.  z )  =  ( 0  x.  z ) )
6 mul02lem2 8495 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
0  x.  z )  =  0 )
75, 6sylan9eqr 2262 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  0 )
8 simprl 529 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  1 )
97, 8eqtr3d 2242 . . . . . . . 8  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  0  =  1 )
109rexlimiva 2620 . . . . . . 7  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  ->  0  =  1 )
113, 10mto 664 . . . . . 6  |-  -.  E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )
12 r19.41v 2664 . . . . . 6  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1  /\  x  =  0 ) )
1311, 12mtbi 672 . . . . 5  |-  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 )
1413biantru 302 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
15 df-xor 1396 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
1614, 15bitr4i 187 . . 3  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
1716ralbii 2514 . 2  |-  ( A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 ) )
181, 17bitri 184 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    \/_ wxo 1395    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965    < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator