Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0xor Unicode version

Theorem trirec0xor 15272
Description: Version of trirec0 15271 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0xor  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Distinct variable group:    x, y, z

Proof of Theorem trirec0xor
StepHypRef Expression
1 trirec0 15271 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
2 1ne0 9018 . . . . . . . 8  |-  1  =/=  0
32nesymi 2406 . . . . . . 7  |-  -.  0  =  1
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  x  =  0 )
54oveq1d 5912 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  ( x  x.  z )  =  ( 0  x.  z ) )
6 mul02lem2 8376 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
0  x.  z )  =  0 )
75, 6sylan9eqr 2244 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  0 )
8 simprl 529 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  1 )
97, 8eqtr3d 2224 . . . . . . . 8  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  0  =  1 )
109rexlimiva 2602 . . . . . . 7  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  ->  0  =  1 )
113, 10mto 663 . . . . . 6  |-  -.  E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )
12 r19.41v 2646 . . . . . 6  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1  /\  x  =  0 ) )
1311, 12mtbi 671 . . . . 5  |-  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 )
1413biantru 302 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
15 df-xor 1387 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
1614, 15bitr4i 187 . . 3  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
1716ralbii 2496 . 2  |-  ( A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 ) )
181, 17bitri 184 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    \/_ wxo 1386    e. wcel 2160   A.wral 2468   E.wrex 2469   class class class wbr 4018  (class class class)co 5897   RRcr 7841   0cc0 7842   1c1 7843    x. cmul 7847    < clt 8023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator