Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0xor Unicode version

Theorem trirec0xor 13758
Description: Version of trirec0 13757 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0xor  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Distinct variable group:    x, y, z

Proof of Theorem trirec0xor
StepHypRef Expression
1 trirec0 13757 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
2 1ne0 8916 . . . . . . . 8  |-  1  =/=  0
32nesymi 2380 . . . . . . 7  |-  -.  0  =  1
4 simpr 109 . . . . . . . . . . 11  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  x  =  0 )
54oveq1d 5851 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  ( x  x.  z )  =  ( 0  x.  z ) )
6 mul02lem2 8277 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
0  x.  z )  =  0 )
75, 6sylan9eqr 2219 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  0 )
8 simprl 521 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  1 )
97, 8eqtr3d 2199 . . . . . . . 8  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  0  =  1 )
109rexlimiva 2576 . . . . . . 7  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  ->  0  =  1 )
113, 10mto 652 . . . . . 6  |-  -.  E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )
12 r19.41v 2620 . . . . . 6  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1  /\  x  =  0 ) )
1311, 12mtbi 660 . . . . 5  |-  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 )
1413biantru 300 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
15 df-xor 1365 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
1614, 15bitr4i 186 . . 3  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
1716ralbii 2470 . 2  |-  ( A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 ) )
181, 17bitri 183 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698    \/ w3o 966    = wceq 1342    \/_ wxo 1364    e. wcel 2135   A.wral 2442   E.wrex 2443   class class class wbr 3976  (class class class)co 5836   RRcr 7743   0cc0 7744   1c1 7745    x. cmul 7749    < clt 7924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-xor 1365  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator