Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trirec0xor Unicode version

Theorem trirec0xor 15776
Description: Version of trirec0 15775 with exclusive-or.

The definition of a discrete field is sometimes stated in terms of exclusive-or but as proved here, this is equivalent to inclusive-or because the two disjuncts cannot be simultaneously true. (Contributed by Jim Kingdon, 10-Jun-2024.)

Assertion
Ref Expression
trirec0xor  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Distinct variable group:    x, y, z

Proof of Theorem trirec0xor
StepHypRef Expression
1 trirec0 15775 . 2  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 ) )
2 1ne0 9075 . . . . . . . 8  |-  1  =/=  0
32nesymi 2413 . . . . . . 7  |-  -.  0  =  1
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  x  =  0 )
54oveq1d 5940 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  =  1  /\  x  =  0 )  ->  ( x  x.  z )  =  ( 0  x.  z ) )
6 mul02lem2 8431 . . . . . . . . . 10  |-  ( z  e.  RR  ->  (
0  x.  z )  =  0 )
75, 6sylan9eqr 2251 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  0 )
8 simprl 529 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  (
x  x.  z )  =  1 )
97, 8eqtr3d 2231 . . . . . . . 8  |-  ( ( z  e.  RR  /\  ( ( x  x.  z )  =  1  /\  x  =  0 ) )  ->  0  =  1 )
109rexlimiva 2609 . . . . . . 7  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  ->  0  =  1 )
113, 10mto 663 . . . . . 6  |-  -.  E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )
12 r19.41v 2653 . . . . . 6  |-  ( E. z  e.  RR  (
( x  x.  z
)  =  1  /\  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1  /\  x  =  0 ) )
1311, 12mtbi 671 . . . . 5  |-  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 )
1413biantru 302 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
15 df-xor 1387 . . . 4  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 )  <-> 
( ( E. z  e.  RR  ( x  x.  z )  =  1  \/  x  =  0 )  /\  -.  ( E. z  e.  RR  ( x  x.  z
)  =  1  /\  x  =  0 ) ) )
1614, 15bitr4i 187 . . 3  |-  ( ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <-> 
( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
1716ralbii 2503 . 2  |-  ( A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/  x  =  0 )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z
)  =  1  \/_  x  =  0 ) )
181, 17bitri 184 1  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  < 
y  \/  x  =  y  \/  y  < 
x )  <->  A. x  e.  RR  ( E. z  e.  RR  ( x  x.  z )  =  1 
\/_  x  =  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    \/_ wxo 1386    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator