ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumtp Unicode version

Theorem sumtp 11840
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
Hypotheses
Ref Expression
sumtp.e  |-  ( k  =  A  ->  D  =  E )
sumtp.f  |-  ( k  =  B  ->  D  =  F )
sumtp.g  |-  ( k  =  C  ->  D  =  G )
sumtp.c  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )
)
sumtp.v  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X
) )
sumtp.1  |-  ( ph  ->  A  =/=  B )
sumtp.2  |-  ( ph  ->  A  =/=  C )
sumtp.3  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
sumtp  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F
)  +  G ) )
Distinct variable groups:    A, k    B, k    C, k    k, E   
k, F    k, G    ph, k    k, V    k, W    k, X
Allowed substitution hint:    D( k)

Proof of Theorem sumtp
StepHypRef Expression
1 sumtp.2 . . . . . 6  |-  ( ph  ->  A  =/=  C )
21necomd 2464 . . . . 5  |-  ( ph  ->  C  =/=  A )
3 sumtp.3 . . . . . 6  |-  ( ph  ->  B  =/=  C )
43necomd 2464 . . . . 5  |-  ( ph  ->  C  =/=  B )
52, 4nelprd 3669 . . . 4  |-  ( ph  ->  -.  C  e.  { A ,  B }
)
6 disjsn 3705 . . . 4  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  -.  C  e.  { A ,  B } )
75, 6sylibr 134 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
8 df-tp 3651 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
98a1i 9 . . 3  |-  ( ph  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
10 sumtp.v . . . . 5  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X
) )
1110simp1d 1012 . . . 4  |-  ( ph  ->  A  e.  V )
1210simp2d 1013 . . . 4  |-  ( ph  ->  B  e.  W )
1310simp3d 1014 . . . 4  |-  ( ph  ->  C  e.  X )
14 sumtp.1 . . . 4  |-  ( ph  ->  A  =/=  B )
1511, 12, 13, 14, 1, 3tpfidisj 7052 . . 3  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
16 sumtp.c . . . . 5  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )
)
17 sumtp.e . . . . . . . 8  |-  ( k  =  A  ->  D  =  E )
1817eleq1d 2276 . . . . . . 7  |-  ( k  =  A  ->  ( D  e.  CC  <->  E  e.  CC ) )
19 sumtp.f . . . . . . . 8  |-  ( k  =  B  ->  D  =  F )
2019eleq1d 2276 . . . . . . 7  |-  ( k  =  B  ->  ( D  e.  CC  <->  F  e.  CC ) )
21 sumtp.g . . . . . . . 8  |-  ( k  =  C  ->  D  =  G )
2221eleq1d 2276 . . . . . . 7  |-  ( k  =  C  ->  ( D  e.  CC  <->  G  e.  CC ) )
2318, 20, 22raltpg 3696 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. k  e. 
{ A ,  B ,  C } D  e.  CC  <->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) ) )
2410, 23syl 14 . . . . 5  |-  ( ph  ->  ( A. k  e. 
{ A ,  B ,  C } D  e.  CC  <->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) ) )
2516, 24mpbird 167 . . . 4  |-  ( ph  ->  A. k  e.  { A ,  B ,  C } D  e.  CC )
2625r19.21bi 2596 . . 3  |-  ( (
ph  /\  k  e.  { A ,  B ,  C } )  ->  D  e.  CC )
277, 9, 15, 26fsumsplit 11833 . 2  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  (
sum_ k  e.  { A ,  B } D  +  sum_ k  e. 
{ C } D
) )
28 3simpa 997 . . . . 5  |-  ( ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )  ->  ( E  e.  CC  /\  F  e.  CC ) )
2916, 28syl 14 . . . 4  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC ) )
30 3simpa 997 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  e.  V  /\  B  e.  W
) )
3110, 30syl 14 . . . 4  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
3217, 19, 29, 31, 14sumpr 11839 . . 3  |-  ( ph  -> 
sum_ k  e.  { A ,  B } D  =  ( E  +  F ) )
3316simp3d 1014 . . . 4  |-  ( ph  ->  G  e.  CC )
3421sumsn 11837 . . . 4  |-  ( ( C  e.  X  /\  G  e.  CC )  -> 
sum_ k  e.  { C } D  =  G )
3513, 33, 34syl2anc 411 . . 3  |-  ( ph  -> 
sum_ k  e.  { C } D  =  G )
3632, 35oveq12d 5985 . 2  |-  ( ph  ->  ( sum_ k  e.  { A ,  B } D  +  sum_ k  e. 
{ C } D
)  =  ( ( E  +  F )  +  G ) )
3727, 36eqtrd 2240 1  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F
)  +  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486    u. cun 3172    i^i cin 3173   (/)c0 3468   {csn 3643   {cpr 3644   {ctp 3645  (class class class)co 5967   CCcc 7958    + caddc 7963   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator