ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumtp Unicode version

Theorem sumtp 11364
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
Hypotheses
Ref Expression
sumtp.e  |-  ( k  =  A  ->  D  =  E )
sumtp.f  |-  ( k  =  B  ->  D  =  F )
sumtp.g  |-  ( k  =  C  ->  D  =  G )
sumtp.c  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )
)
sumtp.v  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X
) )
sumtp.1  |-  ( ph  ->  A  =/=  B )
sumtp.2  |-  ( ph  ->  A  =/=  C )
sumtp.3  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
sumtp  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F
)  +  G ) )
Distinct variable groups:    A, k    B, k    C, k    k, E   
k, F    k, G    ph, k    k, V    k, W    k, X
Allowed substitution hint:    D( k)

Proof of Theorem sumtp
StepHypRef Expression
1 sumtp.2 . . . . . 6  |-  ( ph  ->  A  =/=  C )
21necomd 2426 . . . . 5  |-  ( ph  ->  C  =/=  A )
3 sumtp.3 . . . . . 6  |-  ( ph  ->  B  =/=  C )
43necomd 2426 . . . . 5  |-  ( ph  ->  C  =/=  B )
52, 4nelprd 3607 . . . 4  |-  ( ph  ->  -.  C  e.  { A ,  B }
)
6 disjsn 3643 . . . 4  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  -.  C  e.  { A ,  B } )
75, 6sylibr 133 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
8 df-tp 3589 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
98a1i 9 . . 3  |-  ( ph  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
10 sumtp.v . . . . 5  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X
) )
1110simp1d 1004 . . . 4  |-  ( ph  ->  A  e.  V )
1210simp2d 1005 . . . 4  |-  ( ph  ->  B  e.  W )
1310simp3d 1006 . . . 4  |-  ( ph  ->  C  e.  X )
14 sumtp.1 . . . 4  |-  ( ph  ->  A  =/=  B )
1511, 12, 13, 14, 1, 3tpfidisj 6901 . . 3  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
16 sumtp.c . . . . 5  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )
)
17 sumtp.e . . . . . . . 8  |-  ( k  =  A  ->  D  =  E )
1817eleq1d 2239 . . . . . . 7  |-  ( k  =  A  ->  ( D  e.  CC  <->  E  e.  CC ) )
19 sumtp.f . . . . . . . 8  |-  ( k  =  B  ->  D  =  F )
2019eleq1d 2239 . . . . . . 7  |-  ( k  =  B  ->  ( D  e.  CC  <->  F  e.  CC ) )
21 sumtp.g . . . . . . . 8  |-  ( k  =  C  ->  D  =  G )
2221eleq1d 2239 . . . . . . 7  |-  ( k  =  C  ->  ( D  e.  CC  <->  G  e.  CC ) )
2318, 20, 22raltpg 3634 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. k  e. 
{ A ,  B ,  C } D  e.  CC  <->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) ) )
2410, 23syl 14 . . . . 5  |-  ( ph  ->  ( A. k  e. 
{ A ,  B ,  C } D  e.  CC  <->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) ) )
2516, 24mpbird 166 . . . 4  |-  ( ph  ->  A. k  e.  { A ,  B ,  C } D  e.  CC )
2625r19.21bi 2558 . . 3  |-  ( (
ph  /\  k  e.  { A ,  B ,  C } )  ->  D  e.  CC )
277, 9, 15, 26fsumsplit 11357 . 2  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  (
sum_ k  e.  { A ,  B } D  +  sum_ k  e. 
{ C } D
) )
28 3simpa 989 . . . . 5  |-  ( ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )  ->  ( E  e.  CC  /\  F  e.  CC ) )
2916, 28syl 14 . . . 4  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC ) )
30 3simpa 989 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  e.  V  /\  B  e.  W
) )
3110, 30syl 14 . . . 4  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
3217, 19, 29, 31, 14sumpr 11363 . . 3  |-  ( ph  -> 
sum_ k  e.  { A ,  B } D  =  ( E  +  F ) )
3316simp3d 1006 . . . 4  |-  ( ph  ->  G  e.  CC )
3421sumsn 11361 . . . 4  |-  ( ( C  e.  X  /\  G  e.  CC )  -> 
sum_ k  e.  { C } D  =  G )
3513, 33, 34syl2anc 409 . . 3  |-  ( ph  -> 
sum_ k  e.  { C } D  =  G )
3632, 35oveq12d 5868 . 2  |-  ( ph  ->  ( sum_ k  e.  { A ,  B } D  +  sum_ k  e. 
{ C } D
)  =  ( ( E  +  F )  +  G ) )
3727, 36eqtrd 2203 1  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F
)  +  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3581   {cpr 3582   {ctp 3583  (class class class)co 5850   CCcc 7759    + caddc 7764   sum_csu 11303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-frec 6367  df-1o 6392  df-oadd 6396  df-er 6509  df-en 6715  df-dom 6716  df-fin 6717  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-seqfrec 10389  df-exp 10463  df-ihash 10697  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-clim 11229  df-sumdc 11304
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator