ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumtp Unicode version

Theorem sumtp 11207
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
Hypotheses
Ref Expression
sumtp.e  |-  ( k  =  A  ->  D  =  E )
sumtp.f  |-  ( k  =  B  ->  D  =  F )
sumtp.g  |-  ( k  =  C  ->  D  =  G )
sumtp.c  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )
)
sumtp.v  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X
) )
sumtp.1  |-  ( ph  ->  A  =/=  B )
sumtp.2  |-  ( ph  ->  A  =/=  C )
sumtp.3  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
sumtp  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F
)  +  G ) )
Distinct variable groups:    A, k    B, k    C, k    k, E   
k, F    k, G    ph, k    k, V    k, W    k, X
Allowed substitution hint:    D( k)

Proof of Theorem sumtp
StepHypRef Expression
1 sumtp.2 . . . . . 6  |-  ( ph  ->  A  =/=  C )
21necomd 2394 . . . . 5  |-  ( ph  ->  C  =/=  A )
3 sumtp.3 . . . . . 6  |-  ( ph  ->  B  =/=  C )
43necomd 2394 . . . . 5  |-  ( ph  ->  C  =/=  B )
52, 4nelprd 3553 . . . 4  |-  ( ph  ->  -.  C  e.  { A ,  B }
)
6 disjsn 3588 . . . 4  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  -.  C  e.  { A ,  B } )
75, 6sylibr 133 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
8 df-tp 3535 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
98a1i 9 . . 3  |-  ( ph  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
10 sumtp.v . . . . 5  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X
) )
1110simp1d 993 . . . 4  |-  ( ph  ->  A  e.  V )
1210simp2d 994 . . . 4  |-  ( ph  ->  B  e.  W )
1310simp3d 995 . . . 4  |-  ( ph  ->  C  e.  X )
14 sumtp.1 . . . 4  |-  ( ph  ->  A  =/=  B )
1511, 12, 13, 14, 1, 3tpfidisj 6819 . . 3  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
16 sumtp.c . . . . 5  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )
)
17 sumtp.e . . . . . . . 8  |-  ( k  =  A  ->  D  =  E )
1817eleq1d 2208 . . . . . . 7  |-  ( k  =  A  ->  ( D  e.  CC  <->  E  e.  CC ) )
19 sumtp.f . . . . . . . 8  |-  ( k  =  B  ->  D  =  F )
2019eleq1d 2208 . . . . . . 7  |-  ( k  =  B  ->  ( D  e.  CC  <->  F  e.  CC ) )
21 sumtp.g . . . . . . . 8  |-  ( k  =  C  ->  D  =  G )
2221eleq1d 2208 . . . . . . 7  |-  ( k  =  C  ->  ( D  e.  CC  <->  G  e.  CC ) )
2318, 20, 22raltpg 3579 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. k  e. 
{ A ,  B ,  C } D  e.  CC  <->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) ) )
2410, 23syl 14 . . . . 5  |-  ( ph  ->  ( A. k  e. 
{ A ,  B ,  C } D  e.  CC  <->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) ) )
2516, 24mpbird 166 . . . 4  |-  ( ph  ->  A. k  e.  { A ,  B ,  C } D  e.  CC )
2625r19.21bi 2520 . . 3  |-  ( (
ph  /\  k  e.  { A ,  B ,  C } )  ->  D  e.  CC )
277, 9, 15, 26fsumsplit 11200 . 2  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  (
sum_ k  e.  { A ,  B } D  +  sum_ k  e. 
{ C } D
) )
28 3simpa 978 . . . . 5  |-  ( ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC )  ->  ( E  e.  CC  /\  F  e.  CC ) )
2916, 28syl 14 . . . 4  |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC ) )
30 3simpa 978 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  e.  V  /\  B  e.  W
) )
3110, 30syl 14 . . . 4  |-  ( ph  ->  ( A  e.  V  /\  B  e.  W
) )
3217, 19, 29, 31, 14sumpr 11206 . . 3  |-  ( ph  -> 
sum_ k  e.  { A ,  B } D  =  ( E  +  F ) )
3316simp3d 995 . . . 4  |-  ( ph  ->  G  e.  CC )
3421sumsn 11204 . . . 4  |-  ( ( C  e.  X  /\  G  e.  CC )  -> 
sum_ k  e.  { C } D  =  G )
3513, 33, 34syl2anc 408 . . 3  |-  ( ph  -> 
sum_ k  e.  { C } D  =  G )
3632, 35oveq12d 5795 . 2  |-  ( ph  ->  ( sum_ k  e.  { A ,  B } D  +  sum_ k  e. 
{ C } D
)  =  ( ( E  +  F )  +  G ) )
3727, 36eqtrd 2172 1  |-  ( ph  -> 
sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F
)  +  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416    u. cun 3069    i^i cin 3070   (/)c0 3363   {csn 3527   {cpr 3528   {ctp 3529  (class class class)co 5777   CCcc 7637    + caddc 7642   sum_csu 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4046  ax-sep 4049  ax-nul 4057  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-iinf 4505  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757  ax-arch 7758  ax-caucvg 7759
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-tp 3535  df-op 3536  df-uni 3740  df-int 3775  df-iun 3818  df-br 3933  df-opab 3993  df-mpt 3994  df-tr 4030  df-id 4218  df-po 4221  df-iso 4222  df-iord 4291  df-on 4293  df-ilim 4294  df-suc 4296  df-iom 4508  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-f1 5131  df-fo 5132  df-f1o 5133  df-fv 5134  df-isom 5135  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-1st 6041  df-2nd 6042  df-recs 6205  df-irdg 6270  df-frec 6291  df-1o 6316  df-oadd 6320  df-er 6432  df-en 6638  df-dom 6639  df-fin 6640  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-inn 8740  df-2 8798  df-3 8799  df-4 8800  df-n0 8997  df-z 9074  df-uz 9346  df-q 9434  df-rp 9464  df-fz 9815  df-fzo 9944  df-seqfrec 10243  df-exp 10317  df-ihash 10546  df-cj 10638  df-re 10639  df-im 10640  df-rsqrt 10794  df-abs 10795  df-clim 11072  df-sumdc 11147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator