ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpfidisj Unicode version

Theorem tpfidisj 6905
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
tpfidisj.a  |-  ( ph  ->  A  e.  V )
tpfidisj.b  |-  ( ph  ->  B  e.  W )
tpfidisj.c  |-  ( ph  ->  C  e.  X )
tpfidisj.ab  |-  ( ph  ->  A  =/=  B )
tpfidisj.ac  |-  ( ph  ->  A  =/=  C )
tpfidisj.bc  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
tpfidisj  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )

Proof of Theorem tpfidisj
StepHypRef Expression
1 df-tp 3591 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
2 tpfidisj.a . . . 4  |-  ( ph  ->  A  e.  V )
3 tpfidisj.b . . . 4  |-  ( ph  ->  B  e.  W )
4 tpfidisj.ab . . . 4  |-  ( ph  ->  A  =/=  B )
5 prfidisj 6904 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )
62, 3, 4, 5syl3anc 1233 . . 3  |-  ( ph  ->  { A ,  B }  e.  Fin )
7 tpfidisj.c . . . 4  |-  ( ph  ->  C  e.  X )
8 snfig 6792 . . . 4  |-  ( C  e.  X  ->  { C }  e.  Fin )
97, 8syl 14 . . 3  |-  ( ph  ->  { C }  e.  Fin )
10 tpfidisj.ac . . . . . 6  |-  ( ph  ->  A  =/=  C )
1110necomd 2426 . . . . 5  |-  ( ph  ->  C  =/=  A )
12 tpfidisj.bc . . . . . 6  |-  ( ph  ->  B  =/=  C )
1312necomd 2426 . . . . 5  |-  ( ph  ->  C  =/=  B )
1411, 13nelprd 3609 . . . 4  |-  ( ph  ->  -.  C  e.  { A ,  B }
)
15 disjsn 3645 . . . 4  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  -.  C  e.  { A ,  B } )
1614, 15sylibr 133 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
17 unfidisj 6899 . . 3  |-  ( ( { A ,  B }  e.  Fin  /\  { C }  e.  Fin  /\  ( { A ,  B }  i^i  { C } )  =  (/) )  ->  ( { A ,  B }  u.  { C } )  e.  Fin )
186, 9, 16, 17syl3anc 1233 . 2  |-  ( ph  ->  ( { A ,  B }  u.  { C } )  e.  Fin )
191, 18eqeltrid 2257 1  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    e. wcel 2141    =/= wne 2340    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   {cpr 3584   {ctp 3585   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-tp 3591  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  sumtp  11377
  Copyright terms: Public domain W3C validator