ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpfidisj Unicode version

Theorem tpfidisj 6917
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
tpfidisj.a  |-  ( ph  ->  A  e.  V )
tpfidisj.b  |-  ( ph  ->  B  e.  W )
tpfidisj.c  |-  ( ph  ->  C  e.  X )
tpfidisj.ab  |-  ( ph  ->  A  =/=  B )
tpfidisj.ac  |-  ( ph  ->  A  =/=  C )
tpfidisj.bc  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
tpfidisj  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )

Proof of Theorem tpfidisj
StepHypRef Expression
1 df-tp 3597 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
2 tpfidisj.a . . . 4  |-  ( ph  ->  A  e.  V )
3 tpfidisj.b . . . 4  |-  ( ph  ->  B  e.  W )
4 tpfidisj.ab . . . 4  |-  ( ph  ->  A  =/=  B )
5 prfidisj 6916 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )
62, 3, 4, 5syl3anc 1238 . . 3  |-  ( ph  ->  { A ,  B }  e.  Fin )
7 tpfidisj.c . . . 4  |-  ( ph  ->  C  e.  X )
8 snfig 6804 . . . 4  |-  ( C  e.  X  ->  { C }  e.  Fin )
97, 8syl 14 . . 3  |-  ( ph  ->  { C }  e.  Fin )
10 tpfidisj.ac . . . . . 6  |-  ( ph  ->  A  =/=  C )
1110necomd 2431 . . . . 5  |-  ( ph  ->  C  =/=  A )
12 tpfidisj.bc . . . . . 6  |-  ( ph  ->  B  =/=  C )
1312necomd 2431 . . . . 5  |-  ( ph  ->  C  =/=  B )
1411, 13nelprd 3615 . . . 4  |-  ( ph  ->  -.  C  e.  { A ,  B }
)
15 disjsn 3651 . . . 4  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  -.  C  e.  { A ,  B } )
1614, 15sylibr 134 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
17 unfidisj 6911 . . 3  |-  ( ( { A ,  B }  e.  Fin  /\  { C }  e.  Fin  /\  ( { A ,  B }  i^i  { C } )  =  (/) )  ->  ( { A ,  B }  u.  { C } )  e.  Fin )
186, 9, 16, 17syl3anc 1238 . 2  |-  ( ph  ->  ( { A ,  B }  u.  { C } )  e.  Fin )
191, 18eqeltrid 2262 1  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353    e. wcel 2146    =/= wne 2345    u. cun 3125    i^i cin 3126   (/)c0 3420   {csn 3589   {cpr 3590   {ctp 3591   Fincfn 6730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-tp 3597  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1o 6407  df-er 6525  df-en 6731  df-fin 6733
This theorem is referenced by:  sumtp  11390
  Copyright terms: Public domain W3C validator