| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpfidisj | Unicode version | ||
| Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
| Ref | Expression |
|---|---|
| tpfidisj.a |
|
| tpfidisj.b |
|
| tpfidisj.c |
|
| tpfidisj.ab |
|
| tpfidisj.ac |
|
| tpfidisj.bc |
|
| Ref | Expression |
|---|---|
| tpfidisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3641 |
. 2
| |
| 2 | tpfidisj.a |
. . . 4
| |
| 3 | tpfidisj.b |
. . . 4
| |
| 4 | tpfidisj.ab |
. . . 4
| |
| 5 | prfidisj 7024 |
. . . 4
| |
| 6 | 2, 3, 4, 5 | syl3anc 1250 |
. . 3
|
| 7 | tpfidisj.c |
. . . 4
| |
| 8 | snfig 6906 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | tpfidisj.ac |
. . . . . 6
| |
| 11 | 10 | necomd 2462 |
. . . . 5
|
| 12 | tpfidisj.bc |
. . . . . 6
| |
| 13 | 12 | necomd 2462 |
. . . . 5
|
| 14 | 11, 13 | nelprd 3659 |
. . . 4
|
| 15 | disjsn 3695 |
. . . 4
| |
| 16 | 14, 15 | sylibr 134 |
. . 3
|
| 17 | unfidisj 7019 |
. . 3
| |
| 18 | 6, 9, 16, 17 | syl3anc 1250 |
. 2
|
| 19 | 1, 18 | eqeltrid 2292 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1o 6502 df-er 6620 df-en 6828 df-fin 6830 |
| This theorem is referenced by: sumtp 11725 |
| Copyright terms: Public domain | W3C validator |