Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tpfidisj | Unicode version |
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.) |
Ref | Expression |
---|---|
tpfidisj.a | |
tpfidisj.b | |
tpfidisj.c | |
tpfidisj.ab | |
tpfidisj.ac | |
tpfidisj.bc |
Ref | Expression |
---|---|
tpfidisj |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3597 | . 2 | |
2 | tpfidisj.a | . . . 4 | |
3 | tpfidisj.b | . . . 4 | |
4 | tpfidisj.ab | . . . 4 | |
5 | prfidisj 6916 | . . . 4 | |
6 | 2, 3, 4, 5 | syl3anc 1238 | . . 3 |
7 | tpfidisj.c | . . . 4 | |
8 | snfig 6804 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | tpfidisj.ac | . . . . . 6 | |
11 | 10 | necomd 2431 | . . . . 5 |
12 | tpfidisj.bc | . . . . . 6 | |
13 | 12 | necomd 2431 | . . . . 5 |
14 | 11, 13 | nelprd 3615 | . . . 4 |
15 | disjsn 3651 | . . . 4 | |
16 | 14, 15 | sylibr 134 | . . 3 |
17 | unfidisj 6911 | . . 3 | |
18 | 6, 9, 16, 17 | syl3anc 1238 | . 2 |
19 | 1, 18 | eqeltrid 2262 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1353 wcel 2146 wne 2345 cun 3125 cin 3126 c0 3420 csn 3589 cpr 3590 ctp 3591 cfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-tp 3597 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1o 6407 df-er 6525 df-en 6731 df-fin 6733 |
This theorem is referenced by: sumtp 11390 |
Copyright terms: Public domain | W3C validator |