ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpfidisj Unicode version

Theorem tpfidisj 6893
Description: A triple is finite if it consists of three unequal sets. (Contributed by Jim Kingdon, 1-Oct-2022.)
Hypotheses
Ref Expression
tpfidisj.a  |-  ( ph  ->  A  e.  V )
tpfidisj.b  |-  ( ph  ->  B  e.  W )
tpfidisj.c  |-  ( ph  ->  C  e.  X )
tpfidisj.ab  |-  ( ph  ->  A  =/=  B )
tpfidisj.ac  |-  ( ph  ->  A  =/=  C )
tpfidisj.bc  |-  ( ph  ->  B  =/=  C )
Assertion
Ref Expression
tpfidisj  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )

Proof of Theorem tpfidisj
StepHypRef Expression
1 df-tp 3584 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
2 tpfidisj.a . . . 4  |-  ( ph  ->  A  e.  V )
3 tpfidisj.b . . . 4  |-  ( ph  ->  B  e.  W )
4 tpfidisj.ab . . . 4  |-  ( ph  ->  A  =/=  B )
5 prfidisj 6892 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )
62, 3, 4, 5syl3anc 1228 . . 3  |-  ( ph  ->  { A ,  B }  e.  Fin )
7 tpfidisj.c . . . 4  |-  ( ph  ->  C  e.  X )
8 snfig 6780 . . . 4  |-  ( C  e.  X  ->  { C }  e.  Fin )
97, 8syl 14 . . 3  |-  ( ph  ->  { C }  e.  Fin )
10 tpfidisj.ac . . . . . 6  |-  ( ph  ->  A  =/=  C )
1110necomd 2422 . . . . 5  |-  ( ph  ->  C  =/=  A )
12 tpfidisj.bc . . . . . 6  |-  ( ph  ->  B  =/=  C )
1312necomd 2422 . . . . 5  |-  ( ph  ->  C  =/=  B )
1411, 13nelprd 3602 . . . 4  |-  ( ph  ->  -.  C  e.  { A ,  B }
)
15 disjsn 3638 . . . 4  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  -.  C  e.  { A ,  B } )
1614, 15sylibr 133 . . 3  |-  ( ph  ->  ( { A ,  B }  i^i  { C } )  =  (/) )
17 unfidisj 6887 . . 3  |-  ( ( { A ,  B }  e.  Fin  /\  { C }  e.  Fin  /\  ( { A ,  B }  i^i  { C } )  =  (/) )  ->  ( { A ,  B }  u.  { C } )  e.  Fin )
186, 9, 16, 17syl3anc 1228 . 2  |-  ( ph  ->  ( { A ,  B }  u.  { C } )  e.  Fin )
191, 18eqeltrid 2253 1  |-  ( ph  ->  { A ,  B ,  C }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   {cpr 3577   {ctp 3578   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-tp 3584  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  sumtp  11355
  Copyright terms: Public domain W3C validator