ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcsb Unicode version

Theorem nfcsb 3095
Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsb.1  |-  F/_ x A
nfcsb.2  |-  F/_ x B
Assertion
Ref Expression
nfcsb  |-  F/_ x [_ A  /  y ]_ B

Proof of Theorem nfcsb
StepHypRef Expression
1 nftru 1466 . . 3  |-  F/ y T.
2 nfcsb.1 . . . 4  |-  F/_ x A
32a1i 9 . . 3  |-  ( T. 
->  F/_ x A )
4 nfcsb.2 . . . 4  |-  F/_ x B
54a1i 9 . . 3  |-  ( T. 
->  F/_ x B )
61, 3, 5nfcsbd 3093 . 2  |-  ( T. 
->  F/_ x [_ A  /  y ]_ B
)
76mptru 1362 1  |-  F/_ x [_ A  /  y ]_ B
Colors of variables: wff set class
Syntax hints:   T. wtru 1354   F/_wnfc 2306   [_csb 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-sbc 2964  df-csb 3059
This theorem is referenced by:  cbvralcsf  3120  cbvrexcsf  3121  cbvreucsf  3122  cbvrabcsf  3123  elfvmptrab1  5611  fmptcof  5684  mpomptsx  6198  dmmpossx  6200  fmpox  6201  fmpoco  6217  dfmpo  6224  f1od2  6236  nfsum  11365  fsum2dlemstep  11442  fisumcom2  11446  nfcprod  11563  fsumcncntop  14059
  Copyright terms: Public domain W3C validator