ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd Unicode version

Theorem nfovd 5951
Description: Deduction version of bound-variable hypothesis builder nfov 5952. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2  |-  ( ph  -> 
F/_ x A )
nfovd.3  |-  ( ph  -> 
F/_ x F )
nfovd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfovd  |-  ( ph  -> 
F/_ x ( A F B ) )

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 5925 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 nfovd.3 . . 3  |-  ( ph  -> 
F/_ x F )
3 nfovd.2 . . . 4  |-  ( ph  -> 
F/_ x A )
4 nfovd.4 . . . 4  |-  ( ph  -> 
F/_ x B )
53, 4nfopd 3825 . . 3  |-  ( ph  -> 
F/_ x <. A ,  B >. )
62, 5nffvd 5570 . 2  |-  ( ph  -> 
F/_ x ( F `
 <. A ,  B >. ) )
71, 6nfcxfrd 2337 1  |-  ( ph  -> 
F/_ x ( A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/_wnfc 2326   <.cop 3625   ` cfv 5258  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  nfov  5952  nfnegd  8222
  Copyright terms: Public domain W3C validator