ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd Unicode version

Theorem nfovd 5871
Description: Deduction version of bound-variable hypothesis builder nfov 5872. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2  |-  ( ph  -> 
F/_ x A )
nfovd.3  |-  ( ph  -> 
F/_ x F )
nfovd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfovd  |-  ( ph  -> 
F/_ x ( A F B ) )

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 5845 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 nfovd.3 . . 3  |-  ( ph  -> 
F/_ x F )
3 nfovd.2 . . . 4  |-  ( ph  -> 
F/_ x A )
4 nfovd.4 . . . 4  |-  ( ph  -> 
F/_ x B )
53, 4nfopd 3775 . . 3  |-  ( ph  -> 
F/_ x <. A ,  B >. )
62, 5nffvd 5498 . 2  |-  ( ph  -> 
F/_ x ( F `
 <. A ,  B >. ) )
71, 6nfcxfrd 2306 1  |-  ( ph  -> 
F/_ x ( A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/_wnfc 2295   <.cop 3579   ` cfv 5188  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  nfov  5872  nfnegd  8094
  Copyright terms: Public domain W3C validator