ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfovd Unicode version

Theorem nfovd 5882
Description: Deduction version of bound-variable hypothesis builder nfov 5883. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfovd.2  |-  ( ph  -> 
F/_ x A )
nfovd.3  |-  ( ph  -> 
F/_ x F )
nfovd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfovd  |-  ( ph  -> 
F/_ x ( A F B ) )

Proof of Theorem nfovd
StepHypRef Expression
1 df-ov 5856 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 nfovd.3 . . 3  |-  ( ph  -> 
F/_ x F )
3 nfovd.2 . . . 4  |-  ( ph  -> 
F/_ x A )
4 nfovd.4 . . . 4  |-  ( ph  -> 
F/_ x B )
53, 4nfopd 3782 . . 3  |-  ( ph  -> 
F/_ x <. A ,  B >. )
62, 5nffvd 5508 . 2  |-  ( ph  -> 
F/_ x ( F `
 <. A ,  B >. ) )
71, 6nfcxfrd 2310 1  |-  ( ph  -> 
F/_ x ( A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/_wnfc 2299   <.cop 3586   ` cfv 5198  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  nfov  5883  nfnegd  8115
  Copyright terms: Public domain W3C validator