Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfovd | Unicode version |
Description: Deduction version of bound-variable hypothesis builder nfov 5872. (Contributed by NM, 13-Dec-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
nfovd.2 | |
nfovd.3 | |
nfovd.4 |
Ref | Expression |
---|---|
nfovd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5845 | . 2 | |
2 | nfovd.3 | . . 3 | |
3 | nfovd.2 | . . . 4 | |
4 | nfovd.4 | . . . 4 | |
5 | 3, 4 | nfopd 3775 | . . 3 |
6 | 2, 5 | nffvd 5498 | . 2 |
7 | 1, 6 | nfcxfrd 2306 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wnfc 2295 cop 3579 cfv 5188 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: nfov 5872 nfnegd 8094 |
Copyright terms: Public domain | W3C validator |