ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd Unicode version

Theorem nfnegd 8342
Description: Deduction version of nfneg 8343. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfnegd  |-  ( ph  -> 
F/_ x -u A
)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 8320 . 2  |-  -u A  =  ( 0  -  A )
2 nfcvd 2373 . . 3  |-  ( ph  -> 
F/_ x 0 )
3 nfcvd 2373 . . 3  |-  ( ph  -> 
F/_ x  -  )
4 nfnegd.1 . . 3  |-  ( ph  -> 
F/_ x A )
52, 3, 4nfovd 6030 . 2  |-  ( ph  -> 
F/_ x ( 0  -  A ) )
61, 5nfcxfrd 2370 1  |-  ( ph  -> 
F/_ x -u A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/_wnfc 2359  (class class class)co 6001   0cc0 7999    - cmin 8317   -ucneg 8318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-neg 8320
This theorem is referenced by:  nfneg  8343
  Copyright terms: Public domain W3C validator