ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd Unicode version

Theorem nfnegd 8115
Description: Deduction version of nfneg 8116. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfnegd  |-  ( ph  -> 
F/_ x -u A
)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 8093 . 2  |-  -u A  =  ( 0  -  A )
2 nfcvd 2313 . . 3  |-  ( ph  -> 
F/_ x 0 )
3 nfcvd 2313 . . 3  |-  ( ph  -> 
F/_ x  -  )
4 nfnegd.1 . . 3  |-  ( ph  -> 
F/_ x A )
52, 3, 4nfovd 5882 . 2  |-  ( ph  -> 
F/_ x ( 0  -  A ) )
61, 5nfcxfrd 2310 1  |-  ( ph  -> 
F/_ x -u A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/_wnfc 2299  (class class class)co 5853   0cc0 7774    - cmin 8090   -ucneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-neg 8093
This theorem is referenced by:  nfneg  8116
  Copyright terms: Public domain W3C validator