| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eldifi | Unicode version | ||
| Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| eldifi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldif 3166 | 
. 2
 | |
| 2 | 1 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 | 
| This theorem is referenced by: difss 3289 ssddif 3397 noel 3454 phpm 6926 fidifsnen 6931 elfi2 7038 fiuni 7044 fifo 7046 fzdifsuc 10156 modfzo0difsn 10487 fsum3cvg 11543 summodclem2a 11546 fisumss 11557 fsumlessfi 11625 binomlem 11648 fproddccvg 11737 prodmodclem2a 11741 fprodssdc 11755 fprodeq0g 11803 fprodmodd 11806 oddprmge3 12303 oddprm 12428 nnoddn2prm 12429 nnoddn2prmb 12431 4sqlem19 12578 grpinvnzcl 13204 ringelnzr 13743 ply1termlem 14978 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 dvply1 15001 2irrexpqap 15214 lgslem1 15241 lgslem4 15244 lgsvalmod 15260 gausslemma2dlem0b 15291 gausslemma2dlem0c 15292 gausslemma2dlem1a 15299 gausslemma2dlem1cl 15300 gausslemma2dlem1f1o 15301 gausslemma2dlem4 15305 gausslemma2d 15310 lgsquad2 15324 m1lgs 15326 2lgsoddprm 15354 | 
| Copyright terms: Public domain | W3C validator |