![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eldifi | Unicode version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3153 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-dif 3146 |
This theorem is referenced by: difss 3276 ssddif 3384 noel 3441 phpm 6892 fidifsnen 6897 elfi2 7000 fiuni 7006 fifo 7008 fzdifsuc 10110 modfzo0difsn 10425 fsum3cvg 11417 summodclem2a 11420 fisumss 11431 fsumlessfi 11499 binomlem 11522 fproddccvg 11611 prodmodclem2a 11615 fprodssdc 11629 fprodeq0g 11677 fprodmodd 11680 oddprmge3 12166 oddprm 12290 nnoddn2prm 12291 nnoddn2prmb 12293 4sqlem19 12440 grpinvnzcl 13013 ringelnzr 13531 2irrexpqap 14848 lgslem1 14854 lgslem4 14857 lgsvalmod 14873 m1lgs 14905 |
Copyright terms: Public domain | W3C validator |