Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifi | Unicode version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3136 | . 2 | |
2 | 1 | simplbi 274 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2146 cdif 3124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 |
This theorem is referenced by: difss 3259 ssddif 3367 noel 3424 phpm 6855 fidifsnen 6860 elfi2 6961 fiuni 6967 fifo 6969 fzdifsuc 10049 modfzo0difsn 10363 fsum3cvg 11352 summodclem2a 11355 fisumss 11366 fsumlessfi 11434 binomlem 11457 fproddccvg 11546 prodmodclem2a 11550 fprodssdc 11564 fprodeq0g 11612 fprodmodd 11615 oddprmge3 12100 oddprm 12224 nnoddn2prm 12225 nnoddn2prmb 12227 grpinvnzcl 12801 2irrexpqap 13947 lgslem1 13952 lgslem4 13955 lgsvalmod 13971 |
Copyright terms: Public domain | W3C validator |