Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifi | Unicode version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3124 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2136 cdif 3112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-dif 3117 |
This theorem is referenced by: difss 3247 ssddif 3355 noel 3412 phpm 6827 fidifsnen 6832 elfi2 6933 fiuni 6939 fifo 6941 fzdifsuc 10012 modfzo0difsn 10326 fsum3cvg 11315 summodclem2a 11318 fisumss 11329 fsumlessfi 11397 binomlem 11420 fproddccvg 11509 prodmodclem2a 11513 fprodssdc 11527 fprodeq0g 11575 fprodmodd 11578 oddprmge3 12063 oddprm 12187 nnoddn2prm 12188 nnoddn2prmb 12190 2irrexpqap 13496 lgslem1 13501 lgslem4 13504 lgsvalmod 13520 |
Copyright terms: Public domain | W3C validator |