Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eldifi | Unicode version |
Description: Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
Ref | Expression |
---|---|
eldifi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3130 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wcel 2141 cdif 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 |
This theorem is referenced by: difss 3253 ssddif 3361 noel 3418 phpm 6843 fidifsnen 6848 elfi2 6949 fiuni 6955 fifo 6957 fzdifsuc 10037 modfzo0difsn 10351 fsum3cvg 11341 summodclem2a 11344 fisumss 11355 fsumlessfi 11423 binomlem 11446 fproddccvg 11535 prodmodclem2a 11539 fprodssdc 11553 fprodeq0g 11601 fprodmodd 11604 oddprmge3 12089 oddprm 12213 nnoddn2prm 12214 nnoddn2prmb 12216 grpinvnzcl 12771 2irrexpqap 13690 lgslem1 13695 lgslem4 13698 lgsvalmod 13714 |
Copyright terms: Public domain | W3C validator |