![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfsn | GIF version |
Description: Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfsn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsn | ⊢ Ⅎ𝑥{𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3439 | . 2 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | nfsn.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 2, 2 | nfpr 3469 | . 2 ⊢ Ⅎ𝑥{𝐴, 𝐴} |
4 | 1, 3 | nfcxfr 2222 | 1 ⊢ Ⅎ𝑥{𝐴} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnfc 2212 {csn 3425 {cpr 3426 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-tru 1290 df-nf 1393 df-sb 1690 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-v 2616 df-un 2990 df-sn 3431 df-pr 3432 |
This theorem is referenced by: nfop 3615 nfsuc 4202 sniota 4964 dfmpt2 5926 |
Copyright terms: Public domain | W3C validator |