Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sniota | Unicode version |
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
sniota |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2030 | . . 3 | |
2 | iota1 5174 | . . . . 5 | |
3 | eqcom 2172 | . . . . 5 | |
4 | 2, 3 | bitrdi 195 | . . . 4 |
5 | abid 2158 | . . . 4 | |
6 | vex 2733 | . . . . 5 | |
7 | 6 | elsn 3599 | . . . 4 |
8 | 4, 5, 7 | 3bitr4g 222 | . . 3 |
9 | 1, 8 | alrimi 1515 | . 2 |
10 | nfab1 2314 | . . 3 | |
11 | nfiota1 5162 | . . . 4 | |
12 | 11 | nfsn 3643 | . . 3 |
13 | 10, 12 | cleqf 2337 | . 2 |
14 | 9, 13 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 weu 2019 wcel 2141 cab 2156 csn 3583 cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 |
This theorem is referenced by: snriota 5838 |
Copyright terms: Public domain | W3C validator |