ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sniota Unicode version

Theorem sniota 5187
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota  |-  ( E! x ph  ->  { x  |  ph }  =  {
( iota x ph ) } )

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2030 . . 3  |-  F/ x E! x ph
2 iota1 5172 . . . . 5  |-  ( E! x ph  ->  ( ph 
<->  ( iota x ph )  =  x )
)
3 eqcom 2172 . . . . 5  |-  ( ( iota x ph )  =  x  <->  x  =  ( iota x ph ) )
42, 3bitrdi 195 . . . 4  |-  ( E! x ph  ->  ( ph 
<->  x  =  ( iota
x ph ) ) )
5 abid 2158 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
6 vex 2733 . . . . 5  |-  x  e. 
_V
76elsn 3597 . . . 4  |-  ( x  e.  { ( iota
x ph ) }  <->  x  =  ( iota x ph )
)
84, 5, 73bitr4g 222 . . 3  |-  ( E! x ph  ->  (
x  e.  { x  |  ph }  <->  x  e.  { ( iota x ph ) } ) )
91, 8alrimi 1515 . 2  |-  ( E! x ph  ->  A. x
( x  e.  {
x  |  ph }  <->  x  e.  { ( iota
x ph ) } ) )
10 nfab1 2314 . . 3  |-  F/_ x { x  |  ph }
11 nfiota1 5160 . . . 4  |-  F/_ x
( iota x ph )
1211nfsn 3641 . . 3  |-  F/_ x { ( iota x ph ) }
1310, 12cleqf 2337 . 2  |-  ( { x  |  ph }  =  { ( iota x ph ) }  <->  A. x
( x  e.  {
x  |  ph }  <->  x  e.  { ( iota
x ph ) } ) )
149, 13sylibr 133 1  |-  ( E! x ph  ->  { x  |  ph }  =  {
( iota x ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   E!weu 2019    e. wcel 2141   {cab 2156   {csn 3581   iotacio 5156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3587  df-pr 3588  df-uni 3795  df-iota 5158
This theorem is referenced by:  snriota  5835
  Copyright terms: Public domain W3C validator