ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sniota Unicode version

Theorem sniota 5281
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota  |-  ( E! x ph  ->  { x  |  ph }  =  {
( iota x ph ) } )

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2066 . . 3  |-  F/ x E! x ph
2 iota1 5265 . . . . 5  |-  ( E! x ph  ->  ( ph 
<->  ( iota x ph )  =  x )
)
3 eqcom 2209 . . . . 5  |-  ( ( iota x ph )  =  x  <->  x  =  ( iota x ph ) )
42, 3bitrdi 196 . . . 4  |-  ( E! x ph  ->  ( ph 
<->  x  =  ( iota
x ph ) ) )
5 abid 2195 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
6 vex 2779 . . . . 5  |-  x  e. 
_V
76elsn 3659 . . . 4  |-  ( x  e.  { ( iota
x ph ) }  <->  x  =  ( iota x ph )
)
84, 5, 73bitr4g 223 . . 3  |-  ( E! x ph  ->  (
x  e.  { x  |  ph }  <->  x  e.  { ( iota x ph ) } ) )
91, 8alrimi 1546 . 2  |-  ( E! x ph  ->  A. x
( x  e.  {
x  |  ph }  <->  x  e.  { ( iota
x ph ) } ) )
10 nfab1 2352 . . 3  |-  F/_ x { x  |  ph }
11 nfiota1 5253 . . . 4  |-  F/_ x
( iota x ph )
1211nfsn 3703 . . 3  |-  F/_ x { ( iota x ph ) }
1310, 12cleqf 2375 . 2  |-  ( { x  |  ph }  =  { ( iota x ph ) }  <->  A. x
( x  e.  {
x  |  ph }  <->  x  e.  { ( iota
x ph ) } ) )
149, 13sylibr 134 1  |-  ( E! x ph  ->  { x  |  ph }  =  {
( iota x ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   E!weu 2055    e. wcel 2178   {cab 2193   {csn 3643   iotacio 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-sn 3649  df-pr 3650  df-uni 3865  df-iota 5251
This theorem is referenced by:  snriota  5952
  Copyright terms: Public domain W3C validator