ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sniota Unicode version

Theorem sniota 5180
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota  |-  ( E! x ph  ->  { x  |  ph }  =  {
( iota x ph ) } )

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2025 . . 3  |-  F/ x E! x ph
2 iota1 5167 . . . . 5  |-  ( E! x ph  ->  ( ph 
<->  ( iota x ph )  =  x )
)
3 eqcom 2167 . . . . 5  |-  ( ( iota x ph )  =  x  <->  x  =  ( iota x ph ) )
42, 3bitrdi 195 . . . 4  |-  ( E! x ph  ->  ( ph 
<->  x  =  ( iota
x ph ) ) )
5 abid 2153 . . . 4  |-  ( x  e.  { x  | 
ph }  <->  ph )
6 vex 2729 . . . . 5  |-  x  e. 
_V
76elsn 3592 . . . 4  |-  ( x  e.  { ( iota
x ph ) }  <->  x  =  ( iota x ph )
)
84, 5, 73bitr4g 222 . . 3  |-  ( E! x ph  ->  (
x  e.  { x  |  ph }  <->  x  e.  { ( iota x ph ) } ) )
91, 8alrimi 1510 . 2  |-  ( E! x ph  ->  A. x
( x  e.  {
x  |  ph }  <->  x  e.  { ( iota
x ph ) } ) )
10 nfab1 2310 . . 3  |-  F/_ x { x  |  ph }
11 nfiota1 5155 . . . 4  |-  F/_ x
( iota x ph )
1211nfsn 3636 . . 3  |-  F/_ x { ( iota x ph ) }
1310, 12cleqf 2333 . 2  |-  ( { x  |  ph }  =  { ( iota x ph ) }  <->  A. x
( x  e.  {
x  |  ph }  <->  x  e.  { ( iota
x ph ) } ) )
149, 13sylibr 133 1  |-  ( E! x ph  ->  { x  |  ph }  =  {
( iota x ph ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   E!weu 2014    e. wcel 2136   {cab 2151   {csn 3576   iotacio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153
This theorem is referenced by:  snriota  5827
  Copyright terms: Public domain W3C validator