Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sniota | Unicode version |
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
sniota |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2025 | . . 3 | |
2 | iota1 5167 | . . . . 5 | |
3 | eqcom 2167 | . . . . 5 | |
4 | 2, 3 | bitrdi 195 | . . . 4 |
5 | abid 2153 | . . . 4 | |
6 | vex 2729 | . . . . 5 | |
7 | 6 | elsn 3592 | . . . 4 |
8 | 4, 5, 7 | 3bitr4g 222 | . . 3 |
9 | 1, 8 | alrimi 1510 | . 2 |
10 | nfab1 2310 | . . 3 | |
11 | nfiota1 5155 | . . . 4 | |
12 | 11 | nfsn 3636 | . . 3 |
13 | 10, 12 | cleqf 2333 | . 2 |
14 | 9, 13 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 weu 2014 wcel 2136 cab 2151 csn 3576 cio 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 |
This theorem is referenced by: snriota 5827 |
Copyright terms: Public domain | W3C validator |