ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 Unicode version

Theorem nnssnn0 9333
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0  |-  NN  C_  NN0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3344 . 2  |-  NN  C_  ( NN  u.  { 0 } )
2 df-n0 9331 . 2  |-  NN0  =  ( NN  u.  { 0 } )
31, 2sseqtrri 3236 1  |-  NN  C_  NN0
Colors of variables: wff set class
Syntax hints:    u. cun 3172    C_ wss 3174   {csn 3643   0cc0 7960   NNcn 9071   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-n0 9331
This theorem is referenced by:  nnnn0  9337  nnnn0d  9383  expcnv  11930  oddge22np1  12307  bitsfzolem  12380
  Copyright terms: Public domain W3C validator