ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 Unicode version

Theorem nnssnn0 9298
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0  |-  NN  C_  NN0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3336 . 2  |-  NN  C_  ( NN  u.  { 0 } )
2 df-n0 9296 . 2  |-  NN0  =  ( NN  u.  { 0 } )
31, 2sseqtrri 3228 1  |-  NN  C_  NN0
Colors of variables: wff set class
Syntax hints:    u. cun 3164    C_ wss 3166   {csn 3633   0cc0 7925   NNcn 9036   NN0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-n0 9296
This theorem is referenced by:  nnnn0  9302  nnnn0d  9348  expcnv  11815  oddge22np1  12192  bitsfzolem  12265
  Copyright terms: Public domain W3C validator