ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 Unicode version

Theorem nnssnn0 9243
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0  |-  NN  C_  NN0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3322 . 2  |-  NN  C_  ( NN  u.  { 0 } )
2 df-n0 9241 . 2  |-  NN0  =  ( NN  u.  { 0 } )
31, 2sseqtrri 3214 1  |-  NN  C_  NN0
Colors of variables: wff set class
Syntax hints:    u. cun 3151    C_ wss 3153   {csn 3618   0cc0 7872   NNcn 8982   NN0cn0 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-n0 9241
This theorem is referenced by:  nnnn0  9247  nnnn0d  9293  expcnv  11647  oddge22np1  12022
  Copyright terms: Public domain W3C validator