ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 Unicode version

Theorem nnssnn0 9088
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0  |-  NN  C_  NN0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3270 . 2  |-  NN  C_  ( NN  u.  { 0 } )
2 df-n0 9086 . 2  |-  NN0  =  ( NN  u.  { 0 } )
31, 2sseqtrri 3163 1  |-  NN  C_  NN0
Colors of variables: wff set class
Syntax hints:    u. cun 3100    C_ wss 3102   {csn 3560   0cc0 7727   NNcn 8828   NN0cn0 9085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-n0 9086
This theorem is referenced by:  nnnn0  9092  nnnn0d  9138  expcnv  11396  oddge22np1  11766
  Copyright terms: Public domain W3C validator