ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnssnn0 Unicode version

Theorem nnssnn0 8774
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0  |-  NN  C_  NN0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 3178 . 2  |-  NN  C_  ( NN  u.  { 0 } )
2 df-n0 8772 . 2  |-  NN0  =  ( NN  u.  { 0 } )
31, 2sseqtr4i 3074 1  |-  NN  C_  NN0
Colors of variables: wff set class
Syntax hints:    u. cun 3011    C_ wss 3013   {csn 3466   0cc0 7447   NNcn 8520   NN0cn0 8771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-n0 8772
This theorem is referenced by:  nnnn0  8778  nnnn0d  8824  expcnv  11062  oddge22np1  11323
  Copyright terms: Public domain W3C validator