ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnv Unicode version

Theorem expcnv 11650
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnv.1  |-  ( ph  ->  A  e.  CC )
expcnv.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
Assertion
Ref Expression
expcnv  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnssnn0 9246 . . . 4  |-  NN  C_  NN0
2 resmpt 4991 . . . 4  |-  ( NN  C_  NN0  ->  ( (
n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) )
31, 2ax-mp 5 . . 3  |-  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )
4 expcnv.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
54abscld 11328 . . . . 5  |-  ( ph  ->  ( abs `  A
)  e.  RR )
6 expcnv.2 . . . . 5  |-  ( ph  ->  ( abs `  A
)  <  1 )
74absge0d 11331 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  A ) )
85, 6, 7expcnvre 11649 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
9 nnuz 9631 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
109reseq2i 4940 . . . . . 6  |-  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  ( ZZ>= ` 
1 ) )
1110breq1i 4037 . . . . 5  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  NN )  ~~>  0 
<->  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )  |`  ( ZZ>=
`  1 ) )  ~~>  0 )
12 1z 9346 . . . . . 6  |-  1  e.  ZZ
13 nn0ex 9249 . . . . . . 7  |-  NN0  e.  _V
1413mptex 5785 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  e.  _V
15 climres 11449 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  e.  _V )  ->  ( ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  ( ZZ>= `  1 )
)  ~~>  0  <->  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n
) )  ~~>  0 ) )
1612, 14, 15mp2an 426 . . . . 5  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  ( ZZ>= ` 
1 ) )  ~~>  0  <->  (
n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  ~~>  0 )
1711, 16bitri 184 . . . 4  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  NN )  ~~>  0 
<->  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
188, 17sylibr 134 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )  |`  NN )  ~~>  0 )
193, 18eqbrtrrid 4066 . 2  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
20 1zzd 9347 . . 3  |-  ( ph  ->  1  e.  ZZ )
2113mptex 5785 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2221a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
23 nnex 8990 . . . . 5  |-  NN  e.  _V
2423mptex 5785 . . . 4  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
26 nnnn0 9250 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
2726adantl 277 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
284adantr 276 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
2928, 27expcld 10747 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
30 oveq2 5927 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
31 eqid 2193 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3230, 31fvmptg 5634 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3327, 29, 32syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3433, 29eqeltrd 2270 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
35 absexp 11226 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
364, 26, 35syl2an 289 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3733fveq2d 5559 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
38 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
395adantr 276 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  RR )
4039recnd 8050 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  CC )
4140, 27expcld 10747 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  CC )
42 oveq2 5927 . . . . . 6  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
43 eqid 2193 . . . . . 6  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
4442, 43fvmptg 5634 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( abs `  A
) ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
)  =  ( ( abs `  A ) ^ k ) )
4538, 41, 44syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
4636, 37, 453eqtr4rd 2237 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
479, 20, 22, 25, 34, 46climabs0 11453 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
4819, 47mpbird 167 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3154   class class class wbr 4030    |-> cmpt 4091    |` cres 4662   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    < clt 8056   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ^cexp 10612   abscabs 11144    ~~> cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425
This theorem is referenced by:  explecnv  11651  geolim  11657  geo2lim  11662
  Copyright terms: Public domain W3C validator