ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnv Unicode version

Theorem expcnv 11445
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnv.1  |-  ( ph  ->  A  e.  CC )
expcnv.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
Assertion
Ref Expression
expcnv  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnssnn0 9117 . . . 4  |-  NN  C_  NN0
2 resmpt 4932 . . . 4  |-  ( NN  C_  NN0  ->  ( (
n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) )
31, 2ax-mp 5 . . 3  |-  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )
4 expcnv.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
54abscld 11123 . . . . 5  |-  ( ph  ->  ( abs `  A
)  e.  RR )
6 expcnv.2 . . . . 5  |-  ( ph  ->  ( abs `  A
)  <  1 )
74absge0d 11126 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  A ) )
85, 6, 7expcnvre 11444 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
9 nnuz 9501 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
109reseq2i 4881 . . . . . 6  |-  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  ( ZZ>= ` 
1 ) )
1110breq1i 3989 . . . . 5  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  NN )  ~~>  0 
<->  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )  |`  ( ZZ>=
`  1 ) )  ~~>  0 )
12 1z 9217 . . . . . 6  |-  1  e.  ZZ
13 nn0ex 9120 . . . . . . 7  |-  NN0  e.  _V
1413mptex 5711 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  e.  _V
15 climres 11244 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  e.  _V )  ->  ( ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  ( ZZ>= `  1 )
)  ~~>  0  <->  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n
) )  ~~>  0 ) )
1612, 14, 15mp2an 423 . . . . 5  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  ( ZZ>= ` 
1 ) )  ~~>  0  <->  (
n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  ~~>  0 )
1711, 16bitri 183 . . . 4  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  NN )  ~~>  0 
<->  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
188, 17sylibr 133 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )  |`  NN )  ~~>  0 )
193, 18eqbrtrrid 4018 . 2  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
20 1zzd 9218 . . 3  |-  ( ph  ->  1  e.  ZZ )
2113mptex 5711 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2221a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
23 nnex 8863 . . . . 5  |-  NN  e.  _V
2423mptex 5711 . . . 4  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
26 nnnn0 9121 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
2726adantl 275 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
284adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
2928, 27expcld 10588 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
30 oveq2 5850 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
31 eqid 2165 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3230, 31fvmptg 5562 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3327, 29, 32syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3433, 29eqeltrd 2243 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
35 absexp 11021 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
364, 26, 35syl2an 287 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3733fveq2d 5490 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
38 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
395adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  RR )
4039recnd 7927 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  CC )
4140, 27expcld 10588 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  CC )
42 oveq2 5850 . . . . . 6  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
43 eqid 2165 . . . . . 6  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
4442, 43fvmptg 5562 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( abs `  A
) ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
)  =  ( ( abs `  A ) ^ k ) )
4538, 41, 44syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
4636, 37, 453eqtr4rd 2209 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
479, 20, 22, 25, 34, 46climabs0 11248 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
4819, 47mpbird 166 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116   class class class wbr 3982    |-> cmpt 4043    |` cres 4606   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    < clt 7933   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ^cexp 10454   abscabs 10939    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  explecnv  11446  geolim  11452  geo2lim  11457
  Copyright terms: Public domain W3C validator