ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnv Unicode version

Theorem expcnv 11467
Description: A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnv.1  |-  ( ph  ->  A  e.  CC )
expcnv.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
Assertion
Ref Expression
expcnv  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Distinct variable group:    A, n
Allowed substitution hint:    ph( n)

Proof of Theorem expcnv
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnssnn0 9138 . . . 4  |-  NN  C_  NN0
2 resmpt 4939 . . . 4  |-  ( NN  C_  NN0  ->  ( (
n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) )
31, 2ax-mp 5 . . 3  |-  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )
4 expcnv.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
54abscld 11145 . . . . 5  |-  ( ph  ->  ( abs `  A
)  e.  RR )
6 expcnv.2 . . . . 5  |-  ( ph  ->  ( abs `  A
)  <  1 )
74absge0d 11148 . . . . 5  |-  ( ph  ->  0  <_  ( abs `  A ) )
85, 6, 7expcnvre 11466 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
9 nnuz 9522 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
109reseq2i 4888 . . . . . 6  |-  ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  NN )  =  ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  ( ZZ>= ` 
1 ) )
1110breq1i 3996 . . . . 5  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  NN )  ~~>  0 
<->  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )  |`  ( ZZ>=
`  1 ) )  ~~>  0 )
12 1z 9238 . . . . . 6  |-  1  e.  ZZ
13 nn0ex 9141 . . . . . . 7  |-  NN0  e.  _V
1413mptex 5722 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  e.  _V
15 climres 11266 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  e.  _V )  ->  ( ( ( n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  |`  ( ZZ>= `  1 )
)  ~~>  0  <->  ( n  e.  NN0  |->  ( ( abs `  A ) ^ n
) )  ~~>  0 ) )
1612, 14, 15mp2an 424 . . . . 5  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  ( ZZ>= ` 
1 ) )  ~~>  0  <->  (
n  e.  NN0  |->  ( ( abs `  A ) ^ n ) )  ~~>  0 )
1711, 16bitri 183 . . . 4  |-  ( ( ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  |`  NN )  ~~>  0 
<->  ( n  e.  NN0  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
188, 17sylibr 133 . . 3  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( ( abs `  A ) ^ n
) )  |`  NN )  ~~>  0 )
193, 18eqbrtrrid 4025 . 2  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 )
20 1zzd 9239 . . 3  |-  ( ph  ->  1  e.  ZZ )
2113mptex 5722 . . . 4  |-  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V
2221a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  e.  _V )
23 nnex 8884 . . . . 5  |-  NN  e.  _V
2423mptex 5722 . . . 4  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  e.  _V
2524a1i 9 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  e.  _V )
26 nnnn0 9142 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
2726adantl 275 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e. 
NN0 )
284adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
2928, 27expcld 10609 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( A ^ k )  e.  CC )
30 oveq2 5861 . . . . . 6  |-  ( n  =  k  ->  ( A ^ n )  =  ( A ^ k
) )
31 eqid 2170 . . . . . 6  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
3230, 31fvmptg 5572 . . . . 5  |-  ( ( k  e.  NN0  /\  ( A ^ k )  e.  CC )  -> 
( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k )  =  ( A ^ k ) )
3327, 29, 32syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  =  ( A ^ k
) )
3433, 29eqeltrd 2247 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 k )  e.  CC )
35 absexp 11043 . . . . 5  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )
364, 26, 35syl2an 287 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) )
3733fveq2d 5500 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  k ) )  =  ( abs `  ( A ^ k ) ) )
38 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  k  e.  NN )
395adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  RR )
4039recnd 7948 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  A )  e.  CC )
4140, 27expcld 10609 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( abs `  A ) ^ k )  e.  CC )
42 oveq2 5861 . . . . . 6  |-  ( n  =  k  ->  (
( abs `  A
) ^ n )  =  ( ( abs `  A ) ^ k
) )
43 eqid 2170 . . . . . 6  |-  ( n  e.  NN  |->  ( ( abs `  A ) ^ n ) )  =  ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) )
4442, 43fvmptg 5572 . . . . 5  |-  ( ( k  e.  NN  /\  ( ( abs `  A
) ^ k )  e.  CC )  -> 
( ( n  e.  NN  |->  ( ( abs `  A ) ^ n
) ) `  k
)  =  ( ( abs `  A ) ^ k ) )
4538, 41, 44syl2anc 409 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( ( abs `  A ) ^ k
) )
4636, 37, 453eqtr4rd 2214 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  A
) ^ n ) ) `  k )  =  ( abs `  (
( n  e.  NN0  |->  ( A ^ n ) ) `  k ) ) )
479, 20, 22, 25, 34, 46climabs0 11270 . 2  |-  ( ph  ->  ( ( n  e. 
NN0  |->  ( A ^
n ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  A
) ^ n ) )  ~~>  0 ) )
4819, 47mpbird 166 1  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050    |` cres 4613   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    < clt 7954   NNcn 8878   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  explecnv  11468  geolim  11474  geo2lim  11479
  Copyright terms: Public domain W3C validator