| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9368 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-n0 9366 |
| This theorem is referenced by: nnnn0i 9373 elnnnn0b 9409 elnnnn0c 9410 elnn0z 9455 elz2 9514 nn0ind-raph 9560 zindd 9561 fzo1fzo0n0 10379 ubmelfzo 10401 elfzom1elp1fzo 10403 fzo0sn0fzo1 10422 modqmulnn 10559 expnegap0 10764 expcllem 10767 expcl2lemap 10768 expap0 10786 expeq0 10787 mulexpzap 10796 expnlbnd 10881 apexp1 10935 facdiv 10955 faclbnd 10958 faclbnd3 10960 faclbnd6 10961 pfxn0 11215 resqrexlemlo 11519 absexpzap 11586 nnf1o 11882 summodclem2a 11887 fsum3 11893 arisum 12004 expcnvap0 12008 expcnv 12010 geo2sum 12020 geo2lim 12022 geoisum1c 12026 0.999... 12027 mertenslem2 12042 fprodseq 12089 fprodfac 12121 ef0lem 12166 ege2le3 12177 efaddlem 12180 efexp 12188 dvdsmodexp 12301 nn0enne 12408 nnehalf 12410 nno 12412 nn0o 12413 divalg2 12432 ndvdssub 12436 gcddiv 12535 gcdmultiple 12536 gcdmultiplez 12537 rpmulgcd 12542 rplpwr 12543 dvdssqlem 12546 eucalgf 12572 1nprm 12631 isprm6 12664 prmdvdsexp 12665 pw2dvds 12683 oddpwdc 12691 phicl2 12731 phibndlem 12733 phiprmpw 12739 crth 12741 hashgcdlem 12755 phisum 12758 pythagtriplem10 12787 pythagtriplem6 12788 pythagtriplem7 12789 pythagtriplem12 12793 pythagtriplem14 12795 pclemub 12805 pcexp 12827 pcid 12842 pcprod 12864 pcbc 12869 prmpwdvds 12873 infpnlem1 12877 infpnlem2 12878 prmunb 12880 1arith 12885 ennnfonelemjn 12968 ghmmulg 13788 znf1o 14609 znfi 14613 znhash 14614 znidom 14615 znidomb 14616 znrrg 14618 dvexp 15379 plycolemc 15426 logbgcd1irr 15635 1sgm2ppw 15663 lgsval4a 15695 gausslemma2dlem0c 15724 gausslemma2dlem0d 15725 gausslemma2dlem6 15740 2lgslem1a1 15759 2lgslem1c 15763 2lgslem3a1 15770 2lgslem3b1 15771 2lgslem3c1 15772 2lgslem3d1 15773 |
| Copyright terms: Public domain | W3C validator |