| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9333 |
. 2
| |
| 2 | 1 | sseli 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-n0 9331 |
| This theorem is referenced by: nnnn0i 9338 elnnnn0b 9374 elnnnn0c 9375 elnn0z 9420 elz2 9479 nn0ind-raph 9525 zindd 9526 fzo1fzo0n0 10344 ubmelfzo 10366 elfzom1elp1fzo 10368 fzo0sn0fzo1 10387 modqmulnn 10524 expnegap0 10729 expcllem 10732 expcl2lemap 10733 expap0 10751 expeq0 10752 mulexpzap 10761 expnlbnd 10846 apexp1 10900 facdiv 10920 faclbnd 10923 faclbnd3 10925 faclbnd6 10926 pfxn0 11179 resqrexlemlo 11439 absexpzap 11506 nnf1o 11802 summodclem2a 11807 fsum3 11813 arisum 11924 expcnvap0 11928 expcnv 11930 geo2sum 11940 geo2lim 11942 geoisum1c 11946 0.999... 11947 mertenslem2 11962 fprodseq 12009 fprodfac 12041 ef0lem 12086 ege2le3 12097 efaddlem 12100 efexp 12108 dvdsmodexp 12221 nn0enne 12328 nnehalf 12330 nno 12332 nn0o 12333 divalg2 12352 ndvdssub 12356 gcddiv 12455 gcdmultiple 12456 gcdmultiplez 12457 rpmulgcd 12462 rplpwr 12463 dvdssqlem 12466 eucalgf 12492 1nprm 12551 isprm6 12584 prmdvdsexp 12585 pw2dvds 12603 oddpwdc 12611 phicl2 12651 phibndlem 12653 phiprmpw 12659 crth 12661 hashgcdlem 12675 phisum 12678 pythagtriplem10 12707 pythagtriplem6 12708 pythagtriplem7 12709 pythagtriplem12 12713 pythagtriplem14 12715 pclemub 12725 pcexp 12747 pcid 12762 pcprod 12784 pcbc 12789 prmpwdvds 12793 infpnlem1 12797 infpnlem2 12798 prmunb 12800 1arith 12805 ennnfonelemjn 12888 ghmmulg 13707 znf1o 14528 znfi 14532 znhash 14533 znidom 14534 znidomb 14535 znrrg 14537 dvexp 15298 plycolemc 15345 logbgcd1irr 15554 1sgm2ppw 15582 lgsval4a 15614 gausslemma2dlem0c 15643 gausslemma2dlem0d 15644 gausslemma2dlem6 15659 2lgslem1a1 15678 2lgslem1c 15682 2lgslem3a1 15689 2lgslem3b1 15690 2lgslem3c1 15691 2lgslem3d1 15692 |
| Copyright terms: Public domain | W3C validator |