| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9255 |
. 2
| |
| 2 | 1 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-n0 9253 |
| This theorem is referenced by: nnnn0i 9260 elnnnn0b 9296 elnnnn0c 9297 elnn0z 9342 elz2 9400 nn0ind-raph 9446 zindd 9447 fzo1fzo0n0 10262 ubmelfzo 10279 elfzom1elp1fzo 10281 fzo0sn0fzo1 10300 modqmulnn 10437 expnegap0 10642 expcllem 10645 expcl2lemap 10646 expap0 10664 expeq0 10665 mulexpzap 10674 expnlbnd 10759 apexp1 10813 facdiv 10833 faclbnd 10836 faclbnd3 10838 faclbnd6 10839 resqrexlemlo 11181 absexpzap 11248 nnf1o 11544 summodclem2a 11549 fsum3 11555 arisum 11666 expcnvap0 11670 expcnv 11672 geo2sum 11682 geo2lim 11684 geoisum1c 11688 0.999... 11689 mertenslem2 11704 fprodseq 11751 fprodfac 11783 ef0lem 11828 ege2le3 11839 efaddlem 11842 efexp 11850 dvdsmodexp 11963 nn0enne 12070 nnehalf 12072 nno 12074 nn0o 12075 divalg2 12094 ndvdssub 12098 gcddiv 12197 gcdmultiple 12198 gcdmultiplez 12199 rpmulgcd 12204 rplpwr 12205 dvdssqlem 12208 eucalgf 12234 1nprm 12293 isprm6 12326 prmdvdsexp 12327 pw2dvds 12345 oddpwdc 12353 phicl2 12393 phibndlem 12395 phiprmpw 12401 crth 12403 hashgcdlem 12417 phisum 12420 pythagtriplem10 12449 pythagtriplem6 12450 pythagtriplem7 12451 pythagtriplem12 12455 pythagtriplem14 12457 pclemub 12467 pcexp 12489 pcid 12504 pcprod 12526 pcbc 12531 prmpwdvds 12535 infpnlem1 12539 infpnlem2 12540 prmunb 12542 1arith 12547 ennnfonelemjn 12630 ghmmulg 13412 znf1o 14233 znfi 14237 znhash 14238 znidom 14239 znidomb 14240 znrrg 14242 dvexp 14973 plycolemc 15020 logbgcd1irr 15229 1sgm2ppw 15257 lgsval4a 15289 gausslemma2dlem0c 15318 gausslemma2dlem0d 15319 gausslemma2dlem6 15334 2lgslem1a1 15353 2lgslem1c 15357 2lgslem3a1 15364 2lgslem3b1 15365 2lgslem3c1 15366 2lgslem3d1 15367 |
| Copyright terms: Public domain | W3C validator |