| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9298 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-n0 9296 |
| This theorem is referenced by: nnnn0i 9303 elnnnn0b 9339 elnnnn0c 9340 elnn0z 9385 elz2 9444 nn0ind-raph 9490 zindd 9491 fzo1fzo0n0 10307 ubmelfzo 10329 elfzom1elp1fzo 10331 fzo0sn0fzo1 10350 modqmulnn 10487 expnegap0 10692 expcllem 10695 expcl2lemap 10696 expap0 10714 expeq0 10715 mulexpzap 10724 expnlbnd 10809 apexp1 10863 facdiv 10883 faclbnd 10886 faclbnd3 10888 faclbnd6 10889 resqrexlemlo 11324 absexpzap 11391 nnf1o 11687 summodclem2a 11692 fsum3 11698 arisum 11809 expcnvap0 11813 expcnv 11815 geo2sum 11825 geo2lim 11827 geoisum1c 11831 0.999... 11832 mertenslem2 11847 fprodseq 11894 fprodfac 11926 ef0lem 11971 ege2le3 11982 efaddlem 11985 efexp 11993 dvdsmodexp 12106 nn0enne 12213 nnehalf 12215 nno 12217 nn0o 12218 divalg2 12237 ndvdssub 12241 gcddiv 12340 gcdmultiple 12341 gcdmultiplez 12342 rpmulgcd 12347 rplpwr 12348 dvdssqlem 12351 eucalgf 12377 1nprm 12436 isprm6 12469 prmdvdsexp 12470 pw2dvds 12488 oddpwdc 12496 phicl2 12536 phibndlem 12538 phiprmpw 12544 crth 12546 hashgcdlem 12560 phisum 12563 pythagtriplem10 12592 pythagtriplem6 12593 pythagtriplem7 12594 pythagtriplem12 12598 pythagtriplem14 12600 pclemub 12610 pcexp 12632 pcid 12647 pcprod 12669 pcbc 12674 prmpwdvds 12678 infpnlem1 12682 infpnlem2 12683 prmunb 12685 1arith 12690 ennnfonelemjn 12773 ghmmulg 13592 znf1o 14413 znfi 14417 znhash 14418 znidom 14419 znidomb 14420 znrrg 14422 dvexp 15183 plycolemc 15230 logbgcd1irr 15439 1sgm2ppw 15467 lgsval4a 15499 gausslemma2dlem0c 15528 gausslemma2dlem0d 15529 gausslemma2dlem6 15544 2lgslem1a1 15563 2lgslem1c 15567 2lgslem3a1 15574 2lgslem3b1 15575 2lgslem3c1 15576 2lgslem3d1 15577 |
| Copyright terms: Public domain | W3C validator |