| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9271 |
. 2
| |
| 2 | 1 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-n0 9269 |
| This theorem is referenced by: nnnn0i 9276 elnnnn0b 9312 elnnnn0c 9313 elnn0z 9358 elz2 9416 nn0ind-raph 9462 zindd 9463 fzo1fzo0n0 10278 ubmelfzo 10295 elfzom1elp1fzo 10297 fzo0sn0fzo1 10316 modqmulnn 10453 expnegap0 10658 expcllem 10661 expcl2lemap 10662 expap0 10680 expeq0 10681 mulexpzap 10690 expnlbnd 10775 apexp1 10829 facdiv 10849 faclbnd 10852 faclbnd3 10854 faclbnd6 10855 resqrexlemlo 11197 absexpzap 11264 nnf1o 11560 summodclem2a 11565 fsum3 11571 arisum 11682 expcnvap0 11686 expcnv 11688 geo2sum 11698 geo2lim 11700 geoisum1c 11704 0.999... 11705 mertenslem2 11720 fprodseq 11767 fprodfac 11799 ef0lem 11844 ege2le3 11855 efaddlem 11858 efexp 11866 dvdsmodexp 11979 nn0enne 12086 nnehalf 12088 nno 12090 nn0o 12091 divalg2 12110 ndvdssub 12114 gcddiv 12213 gcdmultiple 12214 gcdmultiplez 12215 rpmulgcd 12220 rplpwr 12221 dvdssqlem 12224 eucalgf 12250 1nprm 12309 isprm6 12342 prmdvdsexp 12343 pw2dvds 12361 oddpwdc 12369 phicl2 12409 phibndlem 12411 phiprmpw 12417 crth 12419 hashgcdlem 12433 phisum 12436 pythagtriplem10 12465 pythagtriplem6 12466 pythagtriplem7 12467 pythagtriplem12 12471 pythagtriplem14 12473 pclemub 12483 pcexp 12505 pcid 12520 pcprod 12542 pcbc 12547 prmpwdvds 12551 infpnlem1 12555 infpnlem2 12556 prmunb 12558 1arith 12563 ennnfonelemjn 12646 ghmmulg 13464 znf1o 14285 znfi 14289 znhash 14290 znidom 14291 znidomb 14292 znrrg 14294 dvexp 15055 plycolemc 15102 logbgcd1irr 15311 1sgm2ppw 15339 lgsval4a 15371 gausslemma2dlem0c 15400 gausslemma2dlem0d 15401 gausslemma2dlem6 15416 2lgslem1a1 15435 2lgslem1c 15439 2lgslem3a1 15446 2lgslem3b1 15447 2lgslem3c1 15448 2lgslem3d1 15449 |
| Copyright terms: Public domain | W3C validator |