ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre Unicode version

Theorem nn0ssre 9373
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre  |-  NN0  C_  RR

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9370 . 2  |-  NN0  =  ( NN  u.  { 0 } )
2 nnssre 9114 . . 3  |-  NN  C_  RR
3 0re 8146 . . . 4  |-  0  e.  RR
4 snssi 3812 . . . 4  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
53, 4ax-mp 5 . . 3  |-  { 0 }  C_  RR
62, 5unssi 3379 . 2  |-  ( NN  u.  { 0 } )  C_  RR
71, 6eqsstri 3256 1  |-  NN0  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666   RRcr 7998   0cc0 7999   NNcn 9110   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-int 3924  df-inn 9111  df-n0 9370
This theorem is referenced by:  nn0sscn  9374  nn0re  9378  nn0rei  9380  nn0red  9423
  Copyright terms: Public domain W3C validator