ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre Unicode version

Theorem nn0ssre 9301
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre  |-  NN0  C_  RR

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9298 . 2  |-  NN0  =  ( NN  u.  { 0 } )
2 nnssre 9042 . . 3  |-  NN  C_  RR
3 0re 8074 . . . 4  |-  0  e.  RR
4 snssi 3777 . . . 4  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
53, 4ax-mp 5 . . 3  |-  { 0 }  C_  RR
62, 5unssi 3348 . 2  |-  ( NN  u.  { 0 } )  C_  RR
71, 6eqsstri 3225 1  |-  NN0  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2176    u. cun 3164    C_ wss 3166   {csn 3633   RRcr 7926   0cc0 7927   NNcn 9038   NN0cn0 9297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024  ax-rnegex 8036
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-int 3886  df-inn 9039  df-n0 9298
This theorem is referenced by:  nn0sscn  9302  nn0re  9306  nn0rei  9308  nn0red  9351
  Copyright terms: Public domain W3C validator