ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ssre Unicode version

Theorem nn0ssre 9270
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nn0ssre  |-  NN0  C_  RR

Proof of Theorem nn0ssre
StepHypRef Expression
1 df-n0 9267 . 2  |-  NN0  =  ( NN  u.  { 0 } )
2 nnssre 9011 . . 3  |-  NN  C_  RR
3 0re 8043 . . . 4  |-  0  e.  RR
4 snssi 3767 . . . 4  |-  ( 0  e.  RR  ->  { 0 }  C_  RR )
53, 4ax-mp 5 . . 3  |-  { 0 }  C_  RR
62, 5unssi 3339 . 2  |-  ( NN  u.  { 0 } )  C_  RR
71, 6eqsstri 3216 1  |-  NN0  C_  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    u. cun 3155    C_ wss 3157   {csn 3623   RRcr 7895   0cc0 7896   NNcn 9007   NN0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-int 3876  df-inn 9008  df-n0 9267
This theorem is referenced by:  nn0sscn  9271  nn0re  9275  nn0rei  9277  nn0red  9320
  Copyright terms: Public domain W3C validator