| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nn0ssre | Unicode version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) | 
| Ref | Expression | 
|---|---|
| nn0ssre | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-n0 9250 | 
. 2
 | |
| 2 | nnssre 8994 | 
. . 3
 | |
| 3 | 0re 8026 | 
. . . 4
 | |
| 4 | snssi 3766 | 
. . . 4
 | |
| 5 | 3, 4 | ax-mp 5 | 
. . 3
 | 
| 6 | 2, 5 | unssi 3338 | 
. 2
 | 
| 7 | 1, 6 | eqsstri 3215 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-int 3875 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: nn0sscn 9254 nn0re 9258 nn0rei 9260 nn0red 9303 | 
| Copyright terms: Public domain | W3C validator |