| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddge22np1 | Unicode version | ||
| Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| oddge22np1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 |
. . . . . . . 8
| |
| 2 | nn0z 9346 |
. . . . . . . . . . 11
| |
| 3 | 2 | adantl 277 |
. . . . . . . . . 10
|
| 4 | eluz2 9607 |
. . . . . . . . . . . 12
| |
| 5 | 2re 9060 |
. . . . . . . . . . . . . . . . 17
| |
| 6 | 5 | a1i 9 |
. . . . . . . . . . . . . . . 16
|
| 7 | 1red 8041 |
. . . . . . . . . . . . . . . 16
| |
| 8 | 2nn0 9266 |
. . . . . . . . . . . . . . . . . . 19
| |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
|
| 10 | id 19 |
. . . . . . . . . . . . . . . . . 18
| |
| 11 | 9, 10 | nn0mulcld 9307 |
. . . . . . . . . . . . . . . . 17
|
| 12 | 11 | nn0red 9303 |
. . . . . . . . . . . . . . . 16
|
| 13 | 6, 7, 12 | lesubaddd 8569 |
. . . . . . . . . . . . . . 15
|
| 14 | 2m1e1 9108 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | 14 | breq1i 4040 |
. . . . . . . . . . . . . . . 16
|
| 16 | nn0re 9258 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | 2pos 9081 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 18 | 5, 17 | pm3.2i 272 |
. . . . . . . . . . . . . . . . . . 19
|
| 19 | 18 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
|
| 20 | ledivmul 8904 |
. . . . . . . . . . . . . . . . . 18
| |
| 21 | 7, 16, 19, 20 | syl3anc 1249 |
. . . . . . . . . . . . . . . . 17
|
| 22 | halfgt0 9206 |
. . . . . . . . . . . . . . . . . 18
| |
| 23 | 0red 8027 |
. . . . . . . . . . . . . . . . . . 19
| |
| 24 | halfre 9204 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 25 | 24 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
|
| 26 | ltletr 8116 |
. . . . . . . . . . . . . . . . . . 19
| |
| 27 | 23, 25, 16, 26 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . 18
|
| 28 | 22, 27 | mpani 430 |
. . . . . . . . . . . . . . . . 17
|
| 29 | 21, 28 | sylbird 170 |
. . . . . . . . . . . . . . . 16
|
| 30 | 15, 29 | biimtrid 152 |
. . . . . . . . . . . . . . 15
|
| 31 | 13, 30 | sylbird 170 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | com12 30 |
. . . . . . . . . . . . 13
|
| 33 | 32 | 3ad2ant3 1022 |
. . . . . . . . . . . 12
|
| 34 | 4, 33 | sylbi 121 |
. . . . . . . . . . 11
|
| 35 | 34 | imp 124 |
. . . . . . . . . 10
|
| 36 | elnnz 9336 |
. . . . . . . . . 10
| |
| 37 | 3, 35, 36 | sylanbrc 417 |
. . . . . . . . 9
|
| 38 | 37 | ex 115 |
. . . . . . . 8
|
| 39 | 1, 38 | biimtrrdi 164 |
. . . . . . 7
|
| 40 | 39 | com13 80 |
. . . . . 6
|
| 41 | 40 | impcom 125 |
. . . . 5
|
| 42 | 41 | pm4.71rd 394 |
. . . 4
|
| 43 | 42 | bicomd 141 |
. . 3
|
| 44 | 43 | rexbidva 2494 |
. 2
|
| 45 | nnssnn0 9252 |
. . 3
| |
| 46 | rexss 3250 |
. . 3
| |
| 47 | 45, 46 | mp1i 10 |
. 2
|
| 48 | eluzge2nn0 9643 |
. . 3
| |
| 49 | oddnn02np1 12045 |
. . 3
| |
| 50 | 48, 49 | syl 14 |
. 2
|
| 51 | 44, 47, 50 | 3bitr4rd 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-dvds 11953 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |