| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oddge22np1 | Unicode version | ||
| Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.) |
| Ref | Expression |
|---|---|
| oddge22np1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2270 |
. . . . . . . 8
| |
| 2 | nn0z 9427 |
. . . . . . . . . . 11
| |
| 3 | 2 | adantl 277 |
. . . . . . . . . 10
|
| 4 | eluz2 9689 |
. . . . . . . . . . . 12
| |
| 5 | 2re 9141 |
. . . . . . . . . . . . . . . . 17
| |
| 6 | 5 | a1i 9 |
. . . . . . . . . . . . . . . 16
|
| 7 | 1red 8122 |
. . . . . . . . . . . . . . . 16
| |
| 8 | 2nn0 9347 |
. . . . . . . . . . . . . . . . . . 19
| |
| 9 | 8 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
|
| 10 | id 19 |
. . . . . . . . . . . . . . . . . 18
| |
| 11 | 9, 10 | nn0mulcld 9388 |
. . . . . . . . . . . . . . . . 17
|
| 12 | 11 | nn0red 9384 |
. . . . . . . . . . . . . . . 16
|
| 13 | 6, 7, 12 | lesubaddd 8650 |
. . . . . . . . . . . . . . 15
|
| 14 | 2m1e1 9189 |
. . . . . . . . . . . . . . . . 17
| |
| 15 | 14 | breq1i 4066 |
. . . . . . . . . . . . . . . 16
|
| 16 | nn0re 9339 |
. . . . . . . . . . . . . . . . . 18
| |
| 17 | 2pos 9162 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 18 | 5, 17 | pm3.2i 272 |
. . . . . . . . . . . . . . . . . . 19
|
| 19 | 18 | a1i 9 |
. . . . . . . . . . . . . . . . . 18
|
| 20 | ledivmul 8985 |
. . . . . . . . . . . . . . . . . 18
| |
| 21 | 7, 16, 19, 20 | syl3anc 1250 |
. . . . . . . . . . . . . . . . 17
|
| 22 | halfgt0 9287 |
. . . . . . . . . . . . . . . . . 18
| |
| 23 | 0red 8108 |
. . . . . . . . . . . . . . . . . . 19
| |
| 24 | halfre 9285 |
. . . . . . . . . . . . . . . . . . . 20
| |
| 25 | 24 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
|
| 26 | ltletr 8197 |
. . . . . . . . . . . . . . . . . . 19
| |
| 27 | 23, 25, 16, 26 | syl3anc 1250 |
. . . . . . . . . . . . . . . . . 18
|
| 28 | 22, 27 | mpani 430 |
. . . . . . . . . . . . . . . . 17
|
| 29 | 21, 28 | sylbird 170 |
. . . . . . . . . . . . . . . 16
|
| 30 | 15, 29 | biimtrid 152 |
. . . . . . . . . . . . . . 15
|
| 31 | 13, 30 | sylbird 170 |
. . . . . . . . . . . . . 14
|
| 32 | 31 | com12 30 |
. . . . . . . . . . . . 13
|
| 33 | 32 | 3ad2ant3 1023 |
. . . . . . . . . . . 12
|
| 34 | 4, 33 | sylbi 121 |
. . . . . . . . . . 11
|
| 35 | 34 | imp 124 |
. . . . . . . . . 10
|
| 36 | elnnz 9417 |
. . . . . . . . . 10
| |
| 37 | 3, 35, 36 | sylanbrc 417 |
. . . . . . . . 9
|
| 38 | 37 | ex 115 |
. . . . . . . 8
|
| 39 | 1, 38 | biimtrrdi 164 |
. . . . . . 7
|
| 40 | 39 | com13 80 |
. . . . . 6
|
| 41 | 40 | impcom 125 |
. . . . 5
|
| 42 | 41 | pm4.71rd 394 |
. . . 4
|
| 43 | 42 | bicomd 141 |
. . 3
|
| 44 | 43 | rexbidva 2505 |
. 2
|
| 45 | nnssnn0 9333 |
. . 3
| |
| 46 | rexss 3268 |
. . 3
| |
| 47 | 45, 46 | mp1i 10 |
. 2
|
| 48 | eluzge2nn0 9725 |
. . 3
| |
| 49 | oddnn02np1 12306 |
. . 3
| |
| 50 | 48, 49 | syl 14 |
. 2
|
| 51 | 44, 47, 50 | 3bitr4rd 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-dvds 12214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |