HomeHome Intuitionistic Logic Explorer
Theorem List (p. 92 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9101-9200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelnnz1 9101 Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  1  <_  N ) )
 
Theoremnnzrab 9102 Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
 |- 
 NN  =  { x  e.  ZZ  |  1  <_  x }
 
Theoremnn0zrab 9103 Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
 |- 
 NN0  =  { x  e.  ZZ  |  0  <_  x }
 
Theorem1z 9104 One is an integer. (Contributed by NM, 10-May-2004.)
 |-  1  e.  ZZ
 
Theorem1zzd 9105 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
 |-  ( ph  ->  1  e.  ZZ )
 
Theorem2z 9106 Two is an integer. (Contributed by NM, 10-May-2004.)
 |-  2  e.  ZZ
 
Theorem3z 9107 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  3  e.  ZZ
 
Theorem4z 9108 4 is an integer. (Contributed by BJ, 26-Mar-2020.)
 |-  4  e.  ZZ
 
Theoremznegcl 9109 Closure law for negative integers. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  ZZ  -> 
 -u N  e.  ZZ )
 
Theoremneg1z 9110 -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
 |-  -u 1  e.  ZZ
 
Theoremznegclb 9111 A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( A  e.  CC  ->  ( A  e.  ZZ  <->  -u A  e.  ZZ ) )
 
Theoremnn0negz 9112 The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  ->  -u N  e.  ZZ )
 
Theoremnn0negzi 9113 The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  N  e.  NN0   =>    |-  -u N  e.  ZZ
 
Theorempeano2z 9114 Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
 |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
 
Theoremzaddcllempos 9115 Lemma for zaddcl 9118. Special case in which  N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
 
Theorempeano2zm 9116 "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.)
 |-  ( N  e.  ZZ  ->  ( N  -  1
 )  e.  ZZ )
 
Theoremzaddcllemneg 9117 Lemma for zaddcl 9118. Special case in which  -u N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
 
Theoremzaddcl 9118 Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
 
Theoremzsubcl 9119 Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N )  e.  ZZ )
 
Theoremztri3or0 9120 Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( N  e.  ZZ  ->  ( N  <  0  \/  N  =  0  \/  0  <  N ) )
 
Theoremztri3or 9121 Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
 
Theoremzletric 9122 Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <_  A ) )
 
Theoremzlelttric 9123 Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  \/  B  <  A ) )
 
Theoremzltnle 9124 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
 )
 
Theoremzleloe 9125 Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <-> 
 ( A  <  B  \/  A  =  B ) ) )
 
Theoremznnnlt1 9126 An integer is not a positive integer iff it is less than one. (Contributed by NM, 13-Jul-2005.)
 |-  ( N  e.  ZZ  ->  ( -.  N  e.  NN 
 <->  N  <  1 ) )
 
Theoremzletr 9127 Transitive law of ordering for integers. (Contributed by Alexander van der Vekens, 3-Apr-2018.)
 |-  ( ( J  e.  ZZ  /\  K  e.  ZZ  /\  L  e.  ZZ )  ->  ( ( J  <_  K 
 /\  K  <_  L )  ->  J  <_  L ) )
 
Theoremzrevaddcl 9128 Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.)
 |-  ( N  e.  ZZ  ->  ( ( M  e.  CC  /\  ( M  +  N )  e.  ZZ ) 
 <->  M  e.  ZZ )
 )
 
Theoremznnsub 9129 The positive difference of unequal integers is a positive integer. (Generalization of nnsub 8783.) (Contributed by NM, 11-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( N  -  M )  e.  NN )
 )
 
Theoremnzadd 9130 The sum of a real number not being an integer and an integer is not an integer. Note that "not being an integer" in this case means "the negation of is an integer" rather than "is apart from any integer" (given excluded middle, those two would be equivalent). (Contributed by AV, 19-Jul-2021.)
 |-  ( ( A  e.  ( RR  \  ZZ )  /\  B  e.  ZZ )  ->  ( A  +  B )  e.  ( RR  \  ZZ ) )
 
Theoremzmulcl 9131 Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N )  e.  ZZ )
 
Theoremzltp1le 9132 Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <-> 
 ( M  +  1 )  <_  N )
 )
 
Theoremzleltp1 9133 Integer ordering relation. (Contributed by NM, 10-May-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremzlem1lt 9134 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremzltlem1 9135 Integer ordering relation. (Contributed by NM, 13-Nov-2004.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremzgt0ge1 9136 An integer greater than  0 is greater than or equal to  1. (Contributed by AV, 14-Oct-2018.)
 |-  ( Z  e.  ZZ  ->  ( 0  <  Z  <->  1 
 <_  Z ) )
 
Theoremnnleltp1 9137 Positive integer ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <_  B  <->  A  <  ( B  +  1 ) ) )
 
Theoremnnltp1le 9138 Positive integer ordering relation. (Contributed by NM, 19-Aug-2001.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  <-> 
 ( A  +  1 )  <_  B )
 )
 
Theoremnnaddm1cl 9139 Closure of addition of positive integers minus one. (Contributed by NM, 6-Aug-2003.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  +  B )  -  1 )  e.  NN )
 
Theoremnn0ltp1le 9140 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  ( M  +  1 ) 
 <_  N ) )
 
Theoremnn0leltp1 9141 Nonnegative integer ordering relation. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  M  <  ( N  +  1 ) ) )
 
Theoremnn0ltlem1 9142 Nonnegative integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <  N  <->  M 
 <_  ( N  -  1
 ) ) )
 
Theoremznn0sub 9143 The nonnegative difference of integers is a nonnegative integer. (Generalization of nn0sub 9144.) (Contributed by NM, 14-Jul-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <_  N  <-> 
 ( N  -  M )  e.  NN0 ) )
 
Theoremnn0sub 9144 Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( N  -  M )  e.  NN0 ) )
 
Theoremnn0n0n1ge2 9145 A nonnegative integer which is neither 0 nor 1 is greater than or equal to 2. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
 |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  -> 
 2  <_  N )
 
Theoremelz2 9146* Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
 
Theoremdfz2 9147 Alternate definition of the integers, based on elz2 9146. (Contributed by Mario Carneiro, 16-May-2014.)
 |- 
 ZZ  =  (  -  " ( NN  X.  NN ) )
 
Theoremnn0sub2 9148 Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( N  -  M )  e. 
 NN0 )
 
Theoremzapne 9149 Apartness is equivalent to not equal for integers. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M #  N  <->  M  =/=  N ) )
 
Theoremzdceq 9150 Equality of integers is decidable. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  B )
 
Theoremzdcle 9151 Integer  <_ is decidable. (Contributed by Jim Kingdon, 7-Apr-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
 
Theoremzdclt 9152 Integer  < is decidable. (Contributed by Jim Kingdon, 1-Jun-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <  B )
 
Theoremzltlen 9153 Integer 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8418 which is a similar result for real numbers. (Contributed by Jim Kingdon, 14-Mar-2020.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremnn0n0n1ge2b 9154 A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
 |-  ( N  e.  NN0  ->  ( ( N  =/=  0  /\  N  =/=  1
 ) 
 <->  2  <_  N )
 )
 
Theoremnn0lt10b 9155 A nonnegative integer less than  1 is  0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  NN0  ->  ( N  <  1  <->  N  =  0
 ) )
 
Theoremnn0lt2 9156 A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
 |-  ( ( N  e.  NN0  /\  N  <  2 ) 
 ->  ( N  =  0  \/  N  =  1 ) )
 
Theoremnn0le2is012 9157 A nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 16-Mar-2019.)
 |-  ( ( N  e.  NN0  /\  N  <_  2 )  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
 
Theoremnn0lem1lt 9158 Nonnegative integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  <_  N  <->  ( M  -  1 )  <  N ) )
 
Theoremnnlem1lt 9159 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <_  N  <-> 
 ( M  -  1
 )  <  N )
 )
 
Theoremnnltlem1 9160 Positive integer ordering relation. (Contributed by NM, 21-Jun-2005.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  <  N  <->  M  <_  ( N  -  1 ) ) )
 
Theoremnnm1ge0 9161 A positive integer decreased by 1 is greater than or equal to 0. (Contributed by AV, 30-Oct-2018.)
 |-  ( N  e.  NN  ->  0  <_  ( N  -  1 ) )
 
Theoremnn0ge0div 9162 Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  0  <_  ( K  /  L ) )
 
Theoremzdiv 9163* Two ways to express " M divides  N. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( M  x.  k )  =  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremzdivadd 9164 Property of divisibility: if  D divides  A and  B then it divides  A  +  B. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  /  D )  e.  ZZ  /\  ( B  /  D )  e. 
 ZZ ) )  ->  ( ( A  +  B )  /  D )  e.  ZZ )
 
Theoremzdivmul 9165 Property of divisibility: if  D divides  A then it divides  B  x.  A. (Contributed by NM, 3-Oct-2008.)
 |-  ( ( ( D  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( A 
 /  D )  e. 
 ZZ )  ->  (
 ( B  x.  A )  /  D )  e. 
 ZZ )
 
Theoremzextle 9166* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <_  M  <->  k  <_  N ) )  ->  M  =  N )
 
Theoremzextlt 9167* An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\ 
 A. k  e.  ZZ  ( k  <  M  <->  k  <  N ) )  ->  M  =  N )
 
Theoremrecnz 9168 The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  -.  ( 1  /  A )  e.  ZZ )
 
Theorembtwnnz 9169 A number between an integer and its successor is not an integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  ZZ  /\  A  <  B  /\  B  <  ( A  +  1 ) ) 
 ->  -.  B  e.  ZZ )
 
Theoremgtndiv 9170 A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A ) 
 ->  -.  ( B  /  A )  e.  ZZ )
 
Theoremhalfnz 9171 One-half is not an integer. (Contributed by NM, 31-Jul-2004.)
 |- 
 -.  ( 1  / 
 2 )  e.  ZZ
 
Theorem3halfnz 9172 Three halves is not an integer. (Contributed by AV, 2-Jun-2020.)
 |- 
 -.  ( 3  / 
 2 )  e.  ZZ
 
Theoremsuprzclex 9173* The supremum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 20-Dec-2021.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  ZZ )   =>    |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  A )
 
Theoremprime 9174* Two ways to express " A is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
 |-  ( A  e.  NN  ->  ( A. x  e. 
 NN  ( ( A 
 /  x )  e. 
 NN  ->  ( x  =  1  \/  x  =  A ) )  <->  A. x  e.  NN  ( ( 1  < 
 x  /\  x  <_  A 
 /\  ( A  /  x )  e.  NN )  ->  x  =  A ) ) )
 
Theoremmsqznn 9175 The square of a nonzero integer is a positive integer. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  ZZ  /\  A  =/=  0
 )  ->  ( A  x.  A )  e.  NN )
 
Theoremzneo 9176 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A )  =/=  (
 ( 2  x.  B )  +  1 )
 )
 
Theoremnneoor 9177 A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  \/  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneo 9178 A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN  <->  -.  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremnneoi 9179 A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.)
 |-  N  e.  NN   =>    |-  ( ( N 
 /  2 )  e. 
 NN 
 <->  -.  ( ( N  +  1 )  / 
 2 )  e.  NN )
 
Theoremzeo 9180 An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  \/  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremzeo2 9181 An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.)
 |-  ( N  e.  ZZ  ->  ( ( N  / 
 2 )  e.  ZZ  <->  -.  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theorempeano2uz2 9182* Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.)
 |-  ( ( A  e.  ZZ  /\  B  e.  { x  e.  ZZ  |  A  <_  x } )  ->  ( B  +  1
 )  e.  { x  e.  ZZ  |  A  <_  x } )
 
Theorempeano5uzti 9183* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.)
 |-  ( N  e.  ZZ  ->  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  { k  e. 
 ZZ  |  N  <_  k }  C_  A )
 )
 
Theorempeano5uzi 9184* Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.)
 |-  N  e.  ZZ   =>    |-  ( ( N  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  { k  e.  ZZ  |  N  <_  k }  C_  A )
 
Theoremdfuzi 9185* An expression for the upper integers that start at  N that is analogous to dfnn2 8746 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
 |-  N  e.  ZZ   =>    |-  { z  e. 
 ZZ  |  N  <_  z }  =  |^| { x  |  ( N  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }
 
Theoremuzind 9186* Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
 
Theoremuzind2 9187* Induction on the upper integers that start after an integer  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
 |-  ( j  =  ( M  +  1 ) 
 ->  ( ph  <->  ps ) )   &    |-  (
 j  =  k  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( k  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <  k )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <  N )  ->  ta )
 
Theoremuzind3 9188* Induction on the upper integers that start at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.)
 |-  ( j  =  M  ->  ( ph  <->  ps ) )   &    |-  (
 j  =  m  ->  ( ph  <->  ch ) )   &    |-  (
 j  =  ( m  +  1 )  ->  ( ph  <->  th ) )   &    |-  (
 j  =  N  ->  (
 ph 
 <->  ta ) )   &    |-  ( M  e.  ZZ  ->  ps )   &    |-  ( ( M  e.  ZZ  /\  m  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ( ch  ->  th ) )   =>    |-  ( ( M  e.  ZZ  /\  N  e.  { k  e.  ZZ  |  M  <_  k }
 )  ->  ta )
 
Theoremnn0ind 9189* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremfzind 9190* Induction on the integers from  M to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  M  ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  (
 ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ps )   &    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  M  <_  y  /\  y  <  N ) ) 
 ->  ( ch  ->  th )
 )   =>    |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) )  ->  ta )
 
Theoremfnn0ind 9191* Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  K  ->  (
 ph 
 <->  ta ) )   &    |-  ( N  e.  NN0  ->  ps )   &    |-  (
 ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )   =>    |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
 
Theoremnn0ind-raph 9192* Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ta ) )   &    |-  ps   &    |-  (
 y  e.  NN0  ->  ( ch  ->  th )
 )   =>    |-  ( A  e.  NN0  ->  ta )
 
Theoremzindd 9193* Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
 |-  ( x  =  0 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  ( y  +  1 )  ->  ( ph  <->  ta ) )   &    |-  ( x  =  -u y  ->  ( ph  <->  th ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  et ) )   &    |-  ( ze  ->  ps )   &    |-  ( ze  ->  ( y  e.  NN0  ->  ( ch  ->  ta )
 ) )   &    |-  ( ze  ->  ( y  e.  NN  ->  ( ch  ->  th )
 ) )   =>    |-  ( ze  ->  ( A  e.  ZZ  ->  et ) )
 
Theorembtwnz 9194* Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.)
 |-  ( A  e.  RR  ->  ( E. x  e. 
 ZZ  x  <  A  /\  E. y  e.  ZZ  A  <  y ) )
 
Theoremnn0zd 9195 A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremnnzd 9196 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  ZZ )
 
Theoremzred 9197 An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremzcnd 9198 An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremznegcld 9199 Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  -u A  e.  ZZ )
 
Theorempeano2zd 9200 Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13441
  Copyright terms: Public domain < Previous  Next >