HomeHome Intuitionistic Logic Explorer
Theorem List (p. 92 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9101-9200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhalfcld 9101 Closure of half of a number (frequently used special case). (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  /  2 )  e. 
 CC )
 
Theorem2halvesd 9102 Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 ( A  /  2
 )  +  ( A 
 /  2 ) )  =  A )
 
Theoremrehalfcld 9103 Real closure of half. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  /  2 )  e. 
 RR )
 
Theoremlt2halvesd 9104 A sum is less than the whole if each term is less than half. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  <  ( C  /  2
 ) )   &    |-  ( ph  ->  B  <  ( C  / 
 2 ) )   =>    |-  ( ph  ->  ( A  +  B )  <  C )
 
Theoremrehalfcli 9105 Half a real number is real. Inference form. (Contributed by David Moews, 28-Feb-2017.)
 |-  A  e.  RR   =>    |-  ( A  / 
 2 )  e.  RR
 
Theoremadd1p1 9106 Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018.)
 |-  ( N  e.  CC  ->  ( ( N  +  1 )  +  1
 )  =  ( N  +  2 ) )
 
Theoremsub1m1 9107 Subtracting two times 1 from a number. (Contributed by AV, 23-Oct-2018.)
 |-  ( N  e.  CC  ->  ( ( N  -  1 )  -  1
 )  =  ( N  -  2 ) )
 
Theoremcnm2m1cnm3 9108 Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
 |-  ( A  e.  CC  ->  ( ( A  -  2 )  -  1
 )  =  ( A  -  3 ) )
 
Theoremxp1d2m1eqxm1d2 9109 A complex number increased by 1, then divided by 2, then decreased by 1 equals the complex number decreased by 1 and then divided by 2. (Contributed by AV, 24-May-2020.)
 |-  ( X  e.  CC  ->  ( ( ( X  +  1 )  / 
 2 )  -  1
 )  =  ( ( X  -  1 ) 
 /  2 ) )
 
Theoremdiv4p1lem1div2 9110 An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
 |-  ( ( N  e.  RR  /\  6  <_  N )  ->  ( ( N 
 /  4 )  +  1 )  <_  ( ( N  -  1 ) 
 /  2 ) )
 
4.4.6  The Archimedean property
 
Theoremarch 9111* Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
 |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n )
 
Theoremnnrecl 9112* There exists a positive integer whose reciprocal is less than a given positive real. Exercise 3 of [Apostol] p. 28. (Contributed by NM, 8-Nov-2004.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  E. n  e.  NN  ( 1  /  n )  <  A )
 
Theorembndndx 9113* A bounded real sequence  A ( k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008.)
 |-  ( E. x  e. 
 RR  A. k  e.  NN  ( A  e.  RR  /\  A  <_  x )  ->  E. k  e.  NN  A  <_  k )
 
4.4.7  Nonnegative integers (as a subset of complex numbers)
 
Syntaxcn0 9114 Extend class notation to include the class of nonnegative integers.
 class  NN0
 
Definitiondf-n0 9115 Define the set of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
 |- 
 NN0  =  ( NN  u.  { 0 } )
 
Theoremelnn0 9116 Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  ( A  e.  NN0  <->  ( A  e.  NN  \/  A  =  0 )
 )
 
Theoremnnssnn0 9117 Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
 |- 
 NN  C_  NN0
 
Theoremnn0ssre 9118 Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.)
 |- 
 NN0  C_  RR
 
Theoremnn0sscn 9119 Nonnegative integers are a subset of the complex numbers.) (Contributed by NM, 9-May-2004.)
 |- 
 NN0  C_  CC
 
Theoremnn0ex 9120 The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.)
 |- 
 NN0  e.  _V
 
Theoremnnnn0 9121 A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.)
 |-  ( A  e.  NN  ->  A  e.  NN0 )
 
Theoremnnnn0i 9122 A positive integer is a nonnegative integer. (Contributed by NM, 20-Jun-2005.)
 |-  N  e.  NN   =>    |-  N  e.  NN0
 
Theoremnn0re 9123 A nonnegative integer is a real number. (Contributed by NM, 9-May-2004.)
 |-  ( A  e.  NN0  ->  A  e.  RR )
 
Theoremnn0cn 9124 A nonnegative integer is a complex number. (Contributed by NM, 9-May-2004.)
 |-  ( A  e.  NN0  ->  A  e.  CC )
 
Theoremnn0rei 9125 A nonnegative integer is a real number. (Contributed by NM, 14-May-2003.)
 |-  A  e.  NN0   =>    |-  A  e.  RR
 
Theoremnn0cni 9126 A nonnegative integer is a complex number. (Contributed by NM, 14-May-2003.)
 |-  A  e.  NN0   =>    |-  A  e.  CC
 
Theoremdfn2 9127 The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
 |- 
 NN  =  ( NN0  \  { 0 } )
 
Theoremelnnne0 9128 The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.)
 |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
 
Theorem0nn0 9129 0 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  0  e.  NN0
 
Theorem1nn0 9130 1 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  1  e.  NN0
 
Theorem2nn0 9131 2 is a nonnegative integer. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  2  e.  NN0
 
Theorem3nn0 9132 3 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  3  e.  NN0
 
Theorem4nn0 9133 4 is a nonnegative integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  4  e.  NN0
 
Theorem5nn0 9134 5 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  5  e.  NN0
 
Theorem6nn0 9135 6 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  6  e.  NN0
 
Theorem7nn0 9136 7 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  7  e.  NN0
 
Theorem8nn0 9137 8 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  8  e.  NN0
 
Theorem9nn0 9138 9 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.)
 |-  9  e.  NN0
 
Theoremnn0ge0 9139 A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN0  -> 
 0  <_  N )
 
Theoremnn0nlt0 9140 A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  NN0  ->  -.  A  <  0 )
 
Theoremnn0ge0i 9141 Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  N  e.  NN0   =>    |-  0  <_  N
 
Theoremnn0le0eq0 9142 A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.)
 |-  ( N  e.  NN0  ->  ( N  <_  0  <->  N  =  0
 ) )
 
Theoremnn0p1gt0 9143 A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
 |-  ( N  e.  NN0  -> 
 0  <  ( N  +  1 ) )
 
Theoremnnnn0addcl 9144 A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  NN )
 
Theoremnn0nnaddcl 9145 A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN )  ->  ( M  +  N )  e.  NN )
 
Theorem0mnnnnn0 9146 The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
 |-  ( N  e.  NN  ->  ( 0  -  N )  e/  NN0 )
 
Theoremun0addcl 9147 If  S is closed under addition, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  T  =  ( S  u.  { 0 } )   &    |-  ( ( ph  /\  ( M  e.  S  /\  N  e.  S ) )  ->  ( M  +  N )  e.  S )   =>    |-  ( ( ph  /\  ( M  e.  T  /\  N  e.  T )
 )  ->  ( M  +  N )  e.  T )
 
Theoremun0mulcl 9148 If  S is closed under multiplication, then so is  S  u.  { 0 }. (Contributed by Mario Carneiro, 17-Jul-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  T  =  ( S  u.  { 0 } )   &    |-  ( ( ph  /\  ( M  e.  S  /\  N  e.  S ) )  ->  ( M  x.  N )  e.  S )   =>    |-  ( ( ph  /\  ( M  e.  T  /\  N  e.  T )
 )  ->  ( M  x.  N )  e.  T )
 
Theoremnn0addcl 9149 Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  +  N )  e.  NN0 )
 
Theoremnn0mulcl 9150 Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M  x.  N )  e.  NN0 )
 
Theoremnn0addcli 9151 Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  M  e.  NN0   &    |-  N  e.  NN0   =>    |-  ( M  +  N )  e.  NN0
 
Theoremnn0mulcli 9152 Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  M  e.  NN0   &    |-  N  e.  NN0   =>    |-  ( M  x.  N )  e.  NN0
 
Theoremnn0p1nn 9153 A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  +  1
 )  e.  NN )
 
Theorempeano2nn0 9154 Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  NN0  ->  ( N  +  1
 )  e.  NN0 )
 
Theoremnnm1nn0 9155 A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN  ->  ( N  -  1
 )  e.  NN0 )
 
Theoremelnn0nn 9156 The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
 |-  ( N  e.  NN0  <->  ( N  e.  CC  /\  ( N  +  1 )  e.  NN ) )
 
Theoremelnnnn0 9157 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
 |-  ( N  e.  NN  <->  ( N  e.  CC  /\  ( N  -  1 )  e. 
 NN0 ) )
 
Theoremelnnnn0b 9158 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
 |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  0  <  N ) )
 
Theoremelnnnn0c 9159 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
 |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
 
Theoremnn0addge1 9160 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0 )  ->  A  <_  ( A  +  N )
 )
 
Theoremnn0addge2 9161 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
 |-  ( ( A  e.  RR  /\  N  e.  NN0 )  ->  A  <_  ( N  +  A )
 )
 
Theoremnn0addge1i 9162 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
 |-  A  e.  RR   &    |-  N  e.  NN0   =>    |-  A  <_  ( A  +  N )
 
Theoremnn0addge2i 9163 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
 |-  A  e.  RR   &    |-  N  e.  NN0   =>    |-  A  <_  ( N  +  A )
 
Theoremnn0le2xi 9164 A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  N  e.  NN0   =>    |-  N  <_  ( 2  x.  N )
 
Theoremnn0lele2xi 9165 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
 |-  M  e.  NN0   &    |-  N  e.  NN0   =>    |-  ( N  <_  M  ->  N  <_  ( 2  x.  M ) )
 
Theoremnn0supp 9166 Two ways to write the support of a function on  NN0. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( F : I --> NN0  ->  ( `' F " ( _V  \  {
 0 } ) )  =  ( `' F " NN ) )
 
Theoremnnnn0d 9167 A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  NN0 )
 
Theoremnn0red 9168 A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremnn0cnd 9169 A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremnn0ge0d 9170 A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremnn0addcld 9171 Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   =>    |-  ( ph  ->  ( A  +  B )  e.  NN0 )
 
Theoremnn0mulcld 9172 Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   =>    |-  ( ph  ->  ( A  x.  B )  e. 
 NN0 )
 
Theoremnn0readdcl 9173 Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  +  B )  e.  RR )
 
Theoremnn0ge2m1nn 9174 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
 |-  ( ( N  e.  NN0  /\  2  <_  N ) 
 ->  ( N  -  1
 )  e.  NN )
 
Theoremnn0ge2m1nn0 9175 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
 |-  ( ( N  e.  NN0  /\  2  <_  N ) 
 ->  ( N  -  1
 )  e.  NN0 )
 
Theoremnn0nndivcl 9176 Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
 |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( K  /  L )  e.  RR )
 
4.4.8  Extended nonnegative integers

The function values of the hash (set size) function are either nonnegative integers or positive infinity. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers  RR*, see df-xr 7937.

 
Syntaxcxnn0 9177 The set of extended nonnegative integers.
 class NN0*
 
Definitiondf-xnn0 9178 Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers  RR*, see df-xr 7937. If we assumed excluded middle, this would be essentially the same as ℕ as defined at df-nninf 7085 but in its absence the relationship between the two is more complicated. (Contributed by AV, 10-Dec-2020.)
 |- NN0*  =  ( NN0  u.  { +oo } )
 
Theoremelxnn0 9179 An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
 |-  ( A  e. NN0*  <->  ( A  e.  NN0 
 \/  A  = +oo ) )
 
Theoremnn0ssxnn0 9180 The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
 |- 
 NN0  C_ NN0*
 
Theoremnn0xnn0 9181 A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
 |-  ( A  e.  NN0  ->  A  e. NN0* )
 
Theoremxnn0xr 9182 An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
 |-  ( A  e. NN0*  ->  A  e.  RR* )
 
Theorem0xnn0 9183 Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
 |-  0  e. NN0*
 
Theorempnf0xnn0 9184 Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
 |- +oo  e. NN0*
 
Theoremnn0nepnf 9185 No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
 |-  ( A  e.  NN0  ->  A  =/= +oo )
 
Theoremnn0xnn0d 9186 A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  e. NN0* )
 
Theoremnn0nepnfd 9187 No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.)
 |-  ( ph  ->  A  e.  NN0 )   =>    |-  ( ph  ->  A  =/= +oo )
 
Theoremxnn0nemnf 9188 No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
 |-  ( A  e. NN0*  ->  A  =/= -oo )
 
Theoremxnn0xrnemnf 9189 The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
 |-  ( A  e. NN0*  ->  ( A  e.  RR*  /\  A  =/= -oo ) )
 
Theoremxnn0nnn0pnf 9190 An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
 |-  ( ( N  e. NN0*  /\ 
 -.  N  e.  NN0 )  ->  N  = +oo )
 
4.4.9  Integers (as a subset of complex numbers)
 
Syntaxcz 9191 Extend class notation to include the class of integers.
 class  ZZ
 
Definitiondf-z 9192 Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.)
 |- 
 ZZ  =  { n  e.  RR  |  ( n  =  0  \/  n  e.  NN  \/  -u n  e.  NN ) }
 
Theoremelz 9193 Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
 |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  =  0  \/  N  e.  NN  \/  -u N  e.  NN )
 ) )
 
Theoremnnnegz 9194 The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
 |-  ( N  e.  NN  -> 
 -u N  e.  ZZ )
 
Theoremzre 9195 An integer is a real. (Contributed by NM, 8-Jan-2002.)
 |-  ( N  e.  ZZ  ->  N  e.  RR )
 
Theoremzcn 9196 An integer is a complex number. (Contributed by NM, 9-May-2004.)
 |-  ( N  e.  ZZ  ->  N  e.  CC )
 
Theoremzrei 9197 An integer is a real number. (Contributed by NM, 14-Jul-2005.)
 |-  A  e.  ZZ   =>    |-  A  e.  RR
 
Theoremzssre 9198 The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
 |- 
 ZZ  C_  RR
 
Theoremzsscn 9199 The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
 |- 
 ZZ  C_  CC
 
Theoremzex 9200 The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |- 
 ZZ  e.  _V
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >