Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0d | Unicode version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 |
Ref | Expression |
---|---|
nnnn0d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9117 | . 2 | |
2 | nnnn0d.1 | . 2 | |
3 | 1, 2 | sselid 3140 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 cn 8857 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-n0 9115 |
This theorem is referenced by: nn0ge2m1nn0 9175 nnzd 9312 eluzge2nn0 9507 modsumfzodifsn 10331 addmodlteq 10333 expnnval 10458 expgt1 10493 expaddzaplem 10498 expaddzap 10499 expmulzap 10501 expnbnd 10578 facwordi 10653 faclbnd 10654 facavg 10659 bcm1k 10673 bcval5 10676 1elfz0hash 10719 resqrexlemnm 10960 resqrexlemcvg 10961 summodc 11324 zsumdc 11325 bcxmas 11430 geo2sum 11455 geo2lim 11457 geoisum1 11460 geoisum1c 11461 cvgratnnlembern 11464 cvgratnnlemsumlt 11469 cvgratnnlemfm 11470 mertenslemi1 11476 prodmodclem3 11516 prodmodclem2a 11517 zproddc 11520 fprodseq 11524 eftabs 11597 efcllemp 11599 eftlub 11631 eirraplem 11717 dvdsfac 11798 divalglemnqt 11857 divalglemeunn 11858 gcdval 11892 gcdcl 11899 dvdsgcdidd 11927 mulgcd 11949 rplpwr 11960 rppwr 11961 lcmcl 12004 lcmgcdnn 12014 nprmdvds1 12072 isprm5lem 12073 rpexp 12085 pw2dvdslemn 12097 sqpweven 12107 2sqpwodd 12108 nn0sqrtelqelz 12138 phiprmpw 12154 crth 12156 eulerthlema 12162 eulerthlemth 12164 eulerth 12165 fermltl 12166 odzcllem 12174 odzdvds 12177 odzphi 12178 modprm0 12186 prm23lt5 12195 pythagtriplem6 12202 pythagtriplem7 12203 pcprmpw2 12264 dvdsprmpweqle 12268 pcprod 12276 pcfac 12280 pcbc 12281 expnprm 12283 pockthlem 12286 pockthg 12287 prmunb 12292 mul4sqlem 12323 logbgcd1irraplemexp 13526 lgslem1 13541 lgsval 13545 lgsfvalg 13546 lgsval2lem 13551 lgsvalmod 13560 lgsmod 13567 lgsdirprm 13575 lgsne0 13579 2sqlem3 13593 cvgcmp2nlemabs 13911 trilpolemlt1 13920 redcwlpolemeq1 13933 nconstwlpolem0 13941 |
Copyright terms: Public domain | W3C validator |