Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0d | Unicode version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 |
Ref | Expression |
---|---|
nnnn0d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9125 | . 2 | |
2 | nnnn0d.1 | . 2 | |
3 | 1, 2 | sselid 3145 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cn 8865 cn0 9122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-n0 9123 |
This theorem is referenced by: nn0ge2m1nn0 9183 nnzd 9320 eluzge2nn0 9515 modsumfzodifsn 10339 addmodlteq 10341 expnnval 10466 expgt1 10501 expaddzaplem 10506 expaddzap 10507 expmulzap 10509 expnbnd 10586 facwordi 10661 faclbnd 10662 facavg 10667 bcm1k 10681 bcval5 10684 1elfz0hash 10728 resqrexlemnm 10969 resqrexlemcvg 10970 summodc 11333 zsumdc 11334 bcxmas 11439 geo2sum 11464 geo2lim 11466 geoisum1 11469 geoisum1c 11470 cvgratnnlembern 11473 cvgratnnlemsumlt 11478 cvgratnnlemfm 11479 mertenslemi1 11485 prodmodclem3 11525 prodmodclem2a 11526 zproddc 11529 fprodseq 11533 eftabs 11606 efcllemp 11608 eftlub 11640 eirraplem 11726 dvdsfac 11807 divalglemnqt 11866 divalglemeunn 11867 gcdval 11901 gcdcl 11908 dvdsgcdidd 11936 mulgcd 11958 rplpwr 11969 rppwr 11970 lcmcl 12013 lcmgcdnn 12023 nprmdvds1 12081 isprm5lem 12082 rpexp 12094 pw2dvdslemn 12106 sqpweven 12116 2sqpwodd 12117 nn0sqrtelqelz 12147 phiprmpw 12163 crth 12165 eulerthlema 12171 eulerthlemth 12173 eulerth 12174 fermltl 12175 odzcllem 12183 odzdvds 12186 odzphi 12187 modprm0 12195 prm23lt5 12204 pythagtriplem6 12211 pythagtriplem7 12212 pcprmpw2 12273 dvdsprmpweqle 12277 pcprod 12285 pcfac 12289 pcbc 12290 expnprm 12292 pockthlem 12295 pockthg 12296 prmunb 12301 mul4sqlem 12332 logbgcd1irraplemexp 13639 lgslem1 13654 lgsval 13658 lgsfvalg 13659 lgsval2lem 13664 lgsvalmod 13673 lgsmod 13680 lgsdirprm 13688 lgsne0 13692 2sqlem3 13706 cvgcmp2nlemabs 14024 trilpolemlt1 14033 redcwlpolemeq1 14046 nconstwlpolem0 14054 |
Copyright terms: Public domain | W3C validator |