ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onin Unicode version

Theorem onin 4417
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )

Proof of Theorem onin
StepHypRef Expression
1 eloni 4406 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 eloni 4406 . . 3  |-  ( B  e.  On  ->  Ord  B )
3 ordin 4416 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
41, 2, 3syl2an 289 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  i^i  B ) )
5 simpl 109 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  e.  On )
6 inex1g 4165 . . 3  |-  ( A  e.  On  ->  ( A  i^i  B )  e. 
_V )
7 elong 4404 . . 3  |-  ( ( A  i^i  B )  e.  _V  ->  (
( A  i^i  B
)  e.  On  <->  Ord  ( A  i^i  B ) ) )
85, 6, 73syl 17 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  i^i  B )  e.  On  <->  Ord  ( A  i^i  B ) ) )
94, 8mpbird 167 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760    i^i cin 3152   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  tfrlem5  6367
  Copyright terms: Public domain W3C validator