ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onin Unicode version

Theorem onin 4371
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.)
Assertion
Ref Expression
onin  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )

Proof of Theorem onin
StepHypRef Expression
1 eloni 4360 . . 3  |-  ( A  e.  On  ->  Ord  A )
2 eloni 4360 . . 3  |-  ( B  e.  On  ->  Ord  B )
3 ordin 4370 . . 3  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
41, 2, 3syl2an 287 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  i^i  B ) )
5 simpl 108 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  A  e.  On )
6 inex1g 4125 . . 3  |-  ( A  e.  On  ->  ( A  i^i  B )  e. 
_V )
7 elong 4358 . . 3  |-  ( ( A  i^i  B )  e.  _V  ->  (
( A  i^i  B
)  e.  On  <->  Ord  ( A  i^i  B ) ) )
85, 6, 73syl 17 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  i^i  B )  e.  On  <->  Ord  ( A  i^i  B ) ) )
94, 8mpbird 166 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  i^i  B
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2141   _Vcvv 2730    i^i cin 3120   Ord word 4347   Oncon0 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353
This theorem is referenced by:  tfrlem5  6293
  Copyright terms: Public domain W3C validator