| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onin | GIF version | ||
| Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
| Ref | Expression |
|---|---|
| onin | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4443 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 4443 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordin 4453 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ∩ 𝐵)) |
| 5 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
| 6 | inex1g 4199 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐵) ∈ V) | |
| 7 | elong 4441 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) | |
| 8 | 5, 6, 7 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) |
| 9 | 4, 8 | mpbird 167 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2180 Vcvv 2779 ∩ cin 3176 Ord word 4430 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-in 3183 df-ss 3190 df-uni 3868 df-tr 4162 df-iord 4434 df-on 4436 |
| This theorem is referenced by: tfrlem5 6430 |
| Copyright terms: Public domain | W3C validator |