Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onin | GIF version |
Description: The intersection of two ordinal numbers is an ordinal number. (Contributed by NM, 7-Apr-1995.) |
Ref | Expression |
---|---|
onin | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4360 | . . 3 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 4360 | . . 3 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordin 4370 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord (𝐴 ∩ 𝐵)) |
5 | simpl 108 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
6 | inex1g 4125 | . . 3 ⊢ (𝐴 ∈ On → (𝐴 ∩ 𝐵) ∈ V) | |
7 | elong 4358 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ V → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) | |
8 | 5, 6, 7 | 3syl 17 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∩ 𝐵) ∈ On ↔ Ord (𝐴 ∩ 𝐵))) |
9 | 4, 8 | mpbird 166 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ 𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ∩ cin 3120 Ord word 4347 Oncon0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: tfrlem5 6293 |
Copyright terms: Public domain | W3C validator |