ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordin Unicode version

Theorem ordin 4403
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 4396 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 ordtr 4396 . . 3  |-  ( Ord 
B  ->  Tr  B
)
3 trin 4126 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
41, 2, 3syl2an 289 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  Tr  ( A  i^i  B ) )
5 inss2 3371 . . 3  |-  ( A  i^i  B )  C_  B
6 trssord 4398 . . 3  |-  ( ( Tr  ( A  i^i  B )  /\  ( A  i^i  B )  C_  B  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
75, 6mp3an2 1336 . 2  |-  ( ( Tr  ( A  i^i  B )  /\  Ord  B
)  ->  Ord  ( A  i^i  B ) )
84, 7sylancom 420 1  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    i^i cin 3143    C_ wss 3144   Tr wtr 4116   Ord word 4380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-in 3150  df-ss 3157  df-uni 3825  df-tr 4117  df-iord 4384
This theorem is referenced by:  onin  4404  smores  6317  smores2  6319
  Copyright terms: Public domain W3C validator