ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordin Unicode version

Theorem ordin 4432
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 4425 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 ordtr 4425 . . 3  |-  ( Ord 
B  ->  Tr  B
)
3 trin 4152 . . 3  |-  ( ( Tr  A  /\  Tr  B )  ->  Tr  ( A  i^i  B ) )
41, 2, 3syl2an 289 . 2  |-  ( ( Ord  A  /\  Ord  B )  ->  Tr  ( A  i^i  B ) )
5 inss2 3394 . . 3  |-  ( A  i^i  B )  C_  B
6 trssord 4427 . . 3  |-  ( ( Tr  ( A  i^i  B )  /\  ( A  i^i  B )  C_  B  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
75, 6mp3an2 1338 . 2  |-  ( ( Tr  ( A  i^i  B )  /\  Ord  B
)  ->  Ord  ( A  i^i  B ) )
84, 7sylancom 420 1  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    i^i cin 3165    C_ wss 3166   Tr wtr 4142   Ord word 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4143  df-iord 4413
This theorem is referenced by:  onin  4433  smores  6378  smores2  6380
  Copyright terms: Public domain W3C validator