Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem5 | Unicode version |
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 | |
2 | vex 2733 | . . 3 | |
3 | 1, 2 | tfrlem3a 6289 | . 2 |
4 | vex 2733 | . . 3 | |
5 | 1, 4 | tfrlem3a 6289 | . 2 |
6 | reeanv 2639 | . . 3 | |
7 | fveq2 5496 | . . . . . . . . 9 | |
8 | fveq2 5496 | . . . . . . . . 9 | |
9 | 7, 8 | eqeq12d 2185 | . . . . . . . 8 |
10 | onin 4371 | . . . . . . . . . 10 | |
11 | 10 | 3ad2ant1 1013 | . . . . . . . . 9 |
12 | simp2ll 1059 | . . . . . . . . . . 11 | |
13 | fnfun 5295 | . . . . . . . . . . 11 | |
14 | 12, 13 | syl 14 | . . . . . . . . . 10 |
15 | inss1 3347 | . . . . . . . . . . 11 | |
16 | fndm 5297 | . . . . . . . . . . . 12 | |
17 | 12, 16 | syl 14 | . . . . . . . . . . 11 |
18 | 15, 17 | sseqtrrid 3198 | . . . . . . . . . 10 |
19 | 14, 18 | jca 304 | . . . . . . . . 9 |
20 | simp2rl 1061 | . . . . . . . . . . 11 | |
21 | fnfun 5295 | . . . . . . . . . . 11 | |
22 | 20, 21 | syl 14 | . . . . . . . . . 10 |
23 | inss2 3348 | . . . . . . . . . . 11 | |
24 | fndm 5297 | . . . . . . . . . . . 12 | |
25 | 20, 24 | syl 14 | . . . . . . . . . . 11 |
26 | 23, 25 | sseqtrrid 3198 | . . . . . . . . . 10 |
27 | 22, 26 | jca 304 | . . . . . . . . 9 |
28 | simp2lr 1060 | . . . . . . . . . 10 | |
29 | ssralv 3211 | . . . . . . . . . 10 | |
30 | 15, 28, 29 | mpsyl 65 | . . . . . . . . 9 |
31 | simp2rr 1062 | . . . . . . . . . 10 | |
32 | ssralv 3211 | . . . . . . . . . 10 | |
33 | 23, 31, 32 | mpsyl 65 | . . . . . . . . 9 |
34 | 11, 19, 27, 30, 33 | tfrlem1 6287 | . . . . . . . 8 |
35 | simp3l 1020 | . . . . . . . . . 10 | |
36 | fnbr 5300 | . . . . . . . . . 10 | |
37 | 12, 35, 36 | syl2anc 409 | . . . . . . . . 9 |
38 | simp3r 1021 | . . . . . . . . . 10 | |
39 | fnbr 5300 | . . . . . . . . . 10 | |
40 | 20, 38, 39 | syl2anc 409 | . . . . . . . . 9 |
41 | elin 3310 | . . . . . . . . 9 | |
42 | 37, 40, 41 | sylanbrc 415 | . . . . . . . 8 |
43 | 9, 34, 42 | rspcdva 2839 | . . . . . . 7 |
44 | funbrfv 5535 | . . . . . . . 8 | |
45 | 14, 35, 44 | sylc 62 | . . . . . . 7 |
46 | funbrfv 5535 | . . . . . . . 8 | |
47 | 22, 38, 46 | sylc 62 | . . . . . . 7 |
48 | 43, 45, 47 | 3eqtr3d 2211 | . . . . . 6 |
49 | 48 | 3exp 1197 | . . . . 5 |
50 | 49 | rexlimdva 2587 | . . . 4 |
51 | 50 | rexlimiv 2581 | . . 3 |
52 | 6, 51 | sylbir 134 | . 2 |
53 | 3, 5, 52 | syl2anb 289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cin 3120 wss 3121 class class class wbr 3989 con0 4348 cdm 4611 cres 4613 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: tfrlem7 6296 tfrexlem 6313 |
Copyright terms: Public domain | W3C validator |