Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem5 | Unicode version |
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 | |
2 | vex 2729 | . . 3 | |
3 | 1, 2 | tfrlem3a 6278 | . 2 |
4 | vex 2729 | . . 3 | |
5 | 1, 4 | tfrlem3a 6278 | . 2 |
6 | reeanv 2635 | . . 3 | |
7 | fveq2 5486 | . . . . . . . . 9 | |
8 | fveq2 5486 | . . . . . . . . 9 | |
9 | 7, 8 | eqeq12d 2180 | . . . . . . . 8 |
10 | onin 4364 | . . . . . . . . . 10 | |
11 | 10 | 3ad2ant1 1008 | . . . . . . . . 9 |
12 | simp2ll 1054 | . . . . . . . . . . 11 | |
13 | fnfun 5285 | . . . . . . . . . . 11 | |
14 | 12, 13 | syl 14 | . . . . . . . . . 10 |
15 | inss1 3342 | . . . . . . . . . . 11 | |
16 | fndm 5287 | . . . . . . . . . . . 12 | |
17 | 12, 16 | syl 14 | . . . . . . . . . . 11 |
18 | 15, 17 | sseqtrrid 3193 | . . . . . . . . . 10 |
19 | 14, 18 | jca 304 | . . . . . . . . 9 |
20 | simp2rl 1056 | . . . . . . . . . . 11 | |
21 | fnfun 5285 | . . . . . . . . . . 11 | |
22 | 20, 21 | syl 14 | . . . . . . . . . 10 |
23 | inss2 3343 | . . . . . . . . . . 11 | |
24 | fndm 5287 | . . . . . . . . . . . 12 | |
25 | 20, 24 | syl 14 | . . . . . . . . . . 11 |
26 | 23, 25 | sseqtrrid 3193 | . . . . . . . . . 10 |
27 | 22, 26 | jca 304 | . . . . . . . . 9 |
28 | simp2lr 1055 | . . . . . . . . . 10 | |
29 | ssralv 3206 | . . . . . . . . . 10 | |
30 | 15, 28, 29 | mpsyl 65 | . . . . . . . . 9 |
31 | simp2rr 1057 | . . . . . . . . . 10 | |
32 | ssralv 3206 | . . . . . . . . . 10 | |
33 | 23, 31, 32 | mpsyl 65 | . . . . . . . . 9 |
34 | 11, 19, 27, 30, 33 | tfrlem1 6276 | . . . . . . . 8 |
35 | simp3l 1015 | . . . . . . . . . 10 | |
36 | fnbr 5290 | . . . . . . . . . 10 | |
37 | 12, 35, 36 | syl2anc 409 | . . . . . . . . 9 |
38 | simp3r 1016 | . . . . . . . . . 10 | |
39 | fnbr 5290 | . . . . . . . . . 10 | |
40 | 20, 38, 39 | syl2anc 409 | . . . . . . . . 9 |
41 | elin 3305 | . . . . . . . . 9 | |
42 | 37, 40, 41 | sylanbrc 414 | . . . . . . . 8 |
43 | 9, 34, 42 | rspcdva 2835 | . . . . . . 7 |
44 | funbrfv 5525 | . . . . . . . 8 | |
45 | 14, 35, 44 | sylc 62 | . . . . . . 7 |
46 | funbrfv 5525 | . . . . . . . 8 | |
47 | 22, 38, 46 | sylc 62 | . . . . . . 7 |
48 | 43, 45, 47 | 3eqtr3d 2206 | . . . . . 6 |
49 | 48 | 3exp 1192 | . . . . 5 |
50 | 49 | rexlimdva 2583 | . . . 4 |
51 | 50 | rexlimiv 2577 | . . 3 |
52 | 6, 51 | sylbir 134 | . 2 |
53 | 3, 5, 52 | syl2anb 289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cin 3115 wss 3116 class class class wbr 3982 con0 4341 cdm 4604 cres 4606 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfrlem7 6285 tfrexlem 6302 |
Copyright terms: Public domain | W3C validator |