ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss Unicode version

Theorem onelss 4381
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4369 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelss 4373 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
32ex 115 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  B  C_  A ) )
41, 3syl 14 1  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146    C_ wss 3127   Ord word 4356   Oncon0 4357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-in 3133  df-ss 3140  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362
This theorem is referenced by:  onelssi  4423  ssorduni  4480  onsucelsucr  4501  tfisi  4580  tfrlem9  6310  nntri2or2  6489  phpelm  6856  exmidontri2or  7232  ennnfonelemk  12366
  Copyright terms: Public domain W3C validator