ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss Unicode version

Theorem onelss 4433
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4421 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelss 4425 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
32ex 115 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  B  C_  A ) )
41, 3syl 14 1  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2175    C_ wss 3165   Ord word 4408   Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414
This theorem is referenced by:  onelssi  4475  ssorduni  4534  onsucelsucr  4555  tfisi  4634  tfrlem9  6404  nntri2or2  6583  phpelm  6962  exmidontri2or  7354  nninfctlemfo  12303  ennnfonelemk  12713
  Copyright terms: Public domain W3C validator