ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss Unicode version

Theorem onelss 4447
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4435 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelss 4439 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
32ex 115 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  B  C_  A ) )
41, 3syl 14 1  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2177    C_ wss 3170   Ord word 4422   Oncon0 4423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-uni 3860  df-tr 4154  df-iord 4426  df-on 4428
This theorem is referenced by:  onelssi  4489  ssorduni  4548  onsucelsucr  4569  tfisi  4648  tfrlem9  6423  nntri2or2  6602  phpelm  6984  exmidontri2or  7384  nninfctlemfo  12446  ennnfonelemk  12856
  Copyright terms: Public domain W3C validator