| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onelss | Unicode version | ||
| Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| onelss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 4435 |
. 2
| |
| 2 | ordelss 4439 |
. . 3
| |
| 3 | 2 | ex 115 |
. 2
|
| 4 | 1, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-uni 3860 df-tr 4154 df-iord 4426 df-on 4428 |
| This theorem is referenced by: onelssi 4489 ssorduni 4548 onsucelsucr 4569 tfisi 4648 tfrlem9 6423 nntri2or2 6602 phpelm 6984 exmidontri2or 7384 nninfctlemfo 12446 ennnfonelemk 12856 |
| Copyright terms: Public domain | W3C validator |