Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onelss | Unicode version |
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
onelss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 4353 | . 2 | |
2 | ordelss 4357 | . . 3 | |
3 | 2 | ex 114 | . 2 |
4 | 1, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 wss 3116 word 4340 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: onelssi 4407 ssorduni 4464 onsucelsucr 4485 tfisi 4564 tfrlem9 6287 nntri2or2 6466 phpelm 6832 exmidontri2or 7199 ennnfonelemk 12333 |
Copyright terms: Public domain | W3C validator |