ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelss Unicode version

Theorem onelss 4422
Description: An element of an ordinal number is a subset of the number. (Contributed by NM, 5-Jun-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
onelss  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )

Proof of Theorem onelss
StepHypRef Expression
1 eloni 4410 . 2  |-  ( A  e.  On  ->  Ord  A )
2 ordelss 4414 . . 3  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
32ex 115 . 2  |-  ( Ord 
A  ->  ( B  e.  A  ->  B  C_  A ) )
41, 3syl 14 1  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    C_ wss 3157   Ord word 4397   Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403
This theorem is referenced by:  onelssi  4464  ssorduni  4523  onsucelsucr  4544  tfisi  4623  tfrlem9  6377  nntri2or2  6556  phpelm  6927  exmidontri2or  7310  nninfctlemfo  12207  ennnfonelemk  12617
  Copyright terms: Public domain W3C validator