ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm Unicode version

Theorem onm 4433
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm  |-  E. x  x  e.  On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4424 . . 3  |-  (/)  e.  On
2 0ex 4157 . . . 4  |-  (/)  e.  _V
3 eleq1 2256 . . . 4  |-  ( x  =  (/)  ->  ( x  e.  On  <->  (/)  e.  On ) )
42, 3ceqsexv 2799 . . 3  |-  ( E. x ( x  =  (/)  /\  x  e.  On ) 
<->  (/)  e.  On )
51, 4mpbir 146 . 2  |-  E. x
( x  =  (/)  /\  x  e.  On )
6 exsimpr 1629 . 2  |-  ( E. x ( x  =  (/)  /\  x  e.  On )  ->  E. x  x  e.  On )
75, 6ax-mp 5 1  |-  E. x  x  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   (/)c0 3447   Oncon0 4395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4156
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-uni 3837  df-tr 4129  df-iord 4398  df-on 4400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator