ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm Unicode version

Theorem onm 4466
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm  |-  E. x  x  e.  On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4457 . . 3  |-  (/)  e.  On
2 0ex 4187 . . . 4  |-  (/)  e.  _V
3 eleq1 2270 . . . 4  |-  ( x  =  (/)  ->  ( x  e.  On  <->  (/)  e.  On ) )
42, 3ceqsexv 2816 . . 3  |-  ( E. x ( x  =  (/)  /\  x  e.  On ) 
<->  (/)  e.  On )
51, 4mpbir 146 . 2  |-  E. x
( x  =  (/)  /\  x  e.  On )
6 exsimpr 1642 . 2  |-  ( E. x ( x  =  (/)  /\  x  e.  On )  ->  E. x  x  e.  On )
75, 6ax-mp 5 1  |-  E. x  x  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2178   (/)c0 3468   Oncon0 4428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-nul 4186
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator