Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onm | Unicode version |
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.) |
Ref | Expression |
---|---|
onm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 4370 | . . 3 | |
2 | 0ex 4109 | . . . 4 | |
3 | eleq1 2229 | . . . 4 | |
4 | 2, 3 | ceqsexv 2765 | . . 3 |
5 | 1, 4 | mpbir 145 | . 2 |
6 | exsimpr 1606 | . 2 | |
7 | 5, 6 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 c0 3409 con0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |