ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onm Unicode version

Theorem onm 4448
Description: The class of all ordinal numbers is inhabited. (Contributed by Jim Kingdon, 6-Mar-2019.)
Assertion
Ref Expression
onm  |-  E. x  x  e.  On

Proof of Theorem onm
StepHypRef Expression
1 0elon 4439 . . 3  |-  (/)  e.  On
2 0ex 4171 . . . 4  |-  (/)  e.  _V
3 eleq1 2268 . . . 4  |-  ( x  =  (/)  ->  ( x  e.  On  <->  (/)  e.  On ) )
42, 3ceqsexv 2811 . . 3  |-  ( E. x ( x  =  (/)  /\  x  e.  On ) 
<->  (/)  e.  On )
51, 4mpbir 146 . 2  |-  E. x
( x  =  (/)  /\  x  e.  On )
6 exsimpr 1641 . 2  |-  ( E. x ( x  =  (/)  /\  x  e.  On )  ->  E. x  x  e.  On )
75, 6ax-mp 5 1  |-  E. x  x  e.  On
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   (/)c0 3460   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator