![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4423 |
. 2
![]() ![]() ![]() | |
2 | 0ex 4157 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | elon 4406 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-nul 4156 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 |
This theorem is referenced by: inton 4425 onn0 4432 onm 4433 limon 4546 ordtriexmid 4554 ontriexmidim 4555 ordtri2orexmid 4556 onsucsssucexmid 4560 onsucelsucexmid 4563 ordsoexmid 4595 ordpwsucexmid 4603 ordtri2or2exmid 4604 ontri2orexmidim 4605 tfr0dm 6377 1on 6478 ordgt0ge1 6490 omv 6510 oa0 6512 om0 6513 oei0 6514 omcl 6516 omv2 6520 oaword1 6526 nna0r 6533 nnm0r 6534 card0 7250 |
Copyright terms: Public domain | W3C validator |