| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4427 |
. 2
| |
| 2 | 0ex 4161 |
. . 3
| |
| 3 | 2 | elon 4410 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 |
| This theorem is referenced by: inton 4429 onn0 4436 onm 4437 limon 4550 ordtriexmid 4558 ontriexmidim 4559 ordtri2orexmid 4560 onsucsssucexmid 4564 onsucelsucexmid 4567 ordsoexmid 4599 ordpwsucexmid 4607 ordtri2or2exmid 4608 ontri2orexmidim 4609 tfr0dm 6389 1on 6490 ordgt0ge1 6502 omv 6522 oa0 6524 om0 6525 oei0 6526 omcl 6528 omv2 6532 oaword1 6538 nna0r 6545 nnm0r 6546 card0 7266 |
| Copyright terms: Public domain | W3C validator |