| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4481 |
. 2
| |
| 2 | 0ex 4210 |
. . 3
| |
| 3 | 2 | elon 4464 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 |
| This theorem is referenced by: inton 4483 onn0 4490 onm 4491 limon 4604 ordtriexmid 4612 ontriexmidim 4613 ordtri2orexmid 4614 onsucsssucexmid 4618 onsucelsucexmid 4621 ordsoexmid 4653 ordpwsucexmid 4661 ordtri2or2exmid 4662 ontri2orexmidim 4663 tfr0dm 6466 1on 6567 ordgt0ge1 6579 omv 6599 oa0 6601 om0 6602 oei0 6603 omcl 6605 omv2 6609 oaword1 6615 nna0r 6622 nnm0r 6623 card0 7356 |
| Copyright terms: Public domain | W3C validator |