![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version |
Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
0elon |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord0 4409 |
. 2
![]() ![]() ![]() | |
2 | 0ex 4145 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | elon 4392 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbir 146 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-nul 4144 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-uni 3825 df-tr 4117 df-iord 4384 df-on 4386 |
This theorem is referenced by: inton 4411 onn0 4418 onm 4419 limon 4530 ordtriexmid 4538 ontriexmidim 4539 ordtri2orexmid 4540 onsucsssucexmid 4544 onsucelsucexmid 4547 ordsoexmid 4579 ordpwsucexmid 4587 ordtri2or2exmid 4588 ontri2orexmidim 4589 tfr0dm 6346 1on 6447 ordgt0ge1 6459 omv 6479 oa0 6481 om0 6482 oei0 6483 omcl 6485 omv2 6489 oaword1 6495 nna0r 6502 nnm0r 6503 card0 7216 |
Copyright terms: Public domain | W3C validator |