| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) | 
| Ref | Expression | 
|---|---|
| 0elon | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ord0 4426 | 
. 2
 | |
| 2 | 0ex 4160 | 
. . 3
 | |
| 3 | 2 | elon 4409 | 
. 2
 | 
| 4 | 1, 3 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: inton 4428 onn0 4435 onm 4436 limon 4549 ordtriexmid 4557 ontriexmidim 4558 ordtri2orexmid 4559 onsucsssucexmid 4563 onsucelsucexmid 4566 ordsoexmid 4598 ordpwsucexmid 4606 ordtri2or2exmid 4607 ontri2orexmidim 4608 tfr0dm 6380 1on 6481 ordgt0ge1 6493 omv 6513 oa0 6515 om0 6516 oei0 6517 omcl 6519 omv2 6523 oaword1 6529 nna0r 6536 nnm0r 6537 card0 7255 | 
| Copyright terms: Public domain | W3C validator |