| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4438 |
. 2
| |
| 2 | 0ex 4171 |
. . 3
| |
| 3 | 2 | elon 4421 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-nul 4170 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 |
| This theorem is referenced by: inton 4440 onn0 4447 onm 4448 limon 4561 ordtriexmid 4569 ontriexmidim 4570 ordtri2orexmid 4571 onsucsssucexmid 4575 onsucelsucexmid 4578 ordsoexmid 4610 ordpwsucexmid 4618 ordtri2or2exmid 4619 ontri2orexmidim 4620 tfr0dm 6408 1on 6509 ordgt0ge1 6521 omv 6541 oa0 6543 om0 6544 oei0 6545 omcl 6547 omv2 6551 oaword1 6557 nna0r 6564 nnm0r 6565 card0 7295 |
| Copyright terms: Public domain | W3C validator |