| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elon | Unicode version | ||
| Description: The empty set is an ordinal number. Corollary 7N(b) of [Enderton] p. 193. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| 0elon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord0 4456 |
. 2
| |
| 2 | 0ex 4187 |
. . 3
| |
| 3 | 2 | elon 4439 |
. 2
|
| 4 | 1, 3 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-nul 4186 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 |
| This theorem is referenced by: inton 4458 onn0 4465 onm 4466 limon 4579 ordtriexmid 4587 ontriexmidim 4588 ordtri2orexmid 4589 onsucsssucexmid 4593 onsucelsucexmid 4596 ordsoexmid 4628 ordpwsucexmid 4636 ordtri2or2exmid 4637 ontri2orexmidim 4638 tfr0dm 6431 1on 6532 ordgt0ge1 6544 omv 6564 oa0 6566 om0 6567 oei0 6568 omcl 6570 omv2 6574 oaword1 6580 nna0r 6587 nnm0r 6588 card0 7321 |
| Copyright terms: Public domain | W3C validator |