ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onn0 GIF version

Theorem onn0 4491
Description: The class of all ordinal numbers is not empty. (Contributed by NM, 17-Sep-1995.)
Assertion
Ref Expression
onn0 On ≠ ∅

Proof of Theorem onn0
StepHypRef Expression
1 0elon 4483 . 2 ∅ ∈ On
2 ne0i 3498 . 2 (∅ ∈ On → On ≠ ∅)
31, 2ax-mp 5 1 On ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2200  wne 2400  c0 3491  Oncon0 4454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4210
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator