ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onnmin Unicode version

Theorem onnmin 4616
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.)
Assertion
Ref Expression
onnmin  |-  ( ( A  C_  On  /\  B  e.  A )  ->  -.  B  e.  |^| A )

Proof of Theorem onnmin
StepHypRef Expression
1 intss1 3900 . . 3  |-  ( B  e.  A  ->  |^| A  C_  B )
2 elirr 4589 . . . 4  |-  -.  B  e.  B
3 ssel 3187 . . . 4  |-  ( |^| A  C_  B  ->  ( B  e.  |^| A  ->  B  e.  B )
)
42, 3mtoi 666 . . 3  |-  ( |^| A  C_  B  ->  -.  B  e.  |^| A )
51, 4syl 14 . 2  |-  ( B  e.  A  ->  -.  B  e.  |^| A )
65adantl 277 1  |-  ( ( A  C_  On  /\  B  e.  A )  ->  -.  B  e.  |^| A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2176    C_ wss 3166   |^|cint 3885   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-sn 3639  df-int 3886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator