| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onnmin | GIF version | ||
| Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.) |
| Ref | Expression |
|---|---|
| onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intss1 3917 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
| 2 | elirr 4610 | . . . 4 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 3 | ssel 3198 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝐵 → (𝐵 ∈ ∩ 𝐴 → 𝐵 ∈ 𝐵)) | |
| 4 | 2, 3 | mtoi 668 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ ∩ 𝐴) |
| 5 | 1, 4 | syl 14 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ ∩ 𝐴) |
| 6 | 5 | adantl 277 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2180 ⊆ wss 3177 ∩ cint 3902 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-sn 3652 df-int 3903 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |