![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onnmin | GIF version |
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.) |
Ref | Expression |
---|---|
onnmin | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 3874 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝐵) | |
2 | elirr 4558 | . . . 4 ⊢ ¬ 𝐵 ∈ 𝐵 | |
3 | ssel 3164 | . . . 4 ⊢ (∩ 𝐴 ⊆ 𝐵 → (𝐵 ∈ ∩ 𝐴 → 𝐵 ∈ 𝐵)) | |
4 | 2, 3 | mtoi 665 | . . 3 ⊢ (∩ 𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ ∩ 𝐴) |
5 | 1, 4 | syl 14 | . 2 ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐵 ∈ ∩ 𝐴) |
6 | 5 | adantl 277 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∈ wcel 2160 ⊆ wss 3144 ∩ cint 3859 Oncon0 4381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-v 2754 df-dif 3146 df-in 3150 df-ss 3157 df-sn 3613 df-int 3860 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |