ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onnmin GIF version

Theorem onnmin 4545
Description: No member of a set of ordinal numbers belongs to its minimum. (Contributed by NM, 2-Feb-1997.) (Constructive proof by Mario Carneiro and Jim Kingdon, 21-Jul-2019.)
Assertion
Ref Expression
onnmin ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)

Proof of Theorem onnmin
StepHypRef Expression
1 intss1 3839 . . 3 (𝐵𝐴 𝐴𝐵)
2 elirr 4518 . . . 4 ¬ 𝐵𝐵
3 ssel 3136 . . . 4 ( 𝐴𝐵 → (𝐵 𝐴𝐵𝐵))
42, 3mtoi 654 . . 3 ( 𝐴𝐵 → ¬ 𝐵 𝐴)
51, 4syl 14 . 2 (𝐵𝐴 → ¬ 𝐵 𝐴)
65adantl 275 1 ((𝐴 ⊆ On ∧ 𝐵𝐴) → ¬ 𝐵 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 2136  wss 3116   cint 3824  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-sn 3582  df-int 3825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator