ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel Unicode version

Theorem ssnel 4605
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel  |-  ( A 
C_  B  ->  -.  B  e.  A )

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4577 . 2  |-  -.  B  e.  B
2 ssel 3177 . 2  |-  ( A 
C_  B  ->  ( B  e.  A  ->  B  e.  B ) )
31, 2mtoi 665 1  |-  ( A 
C_  B  ->  -.  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2167    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-sn 3628
This theorem is referenced by:  nntri1  6554  pw1ne3  7297  3nelsucpw1  7301  3nsssucpw1  7303  nninfctlemfo  12207
  Copyright terms: Public domain W3C validator