ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel Unicode version

Theorem ssnel 4635
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel  |-  ( A 
C_  B  ->  -.  B  e.  A )

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4607 . 2  |-  -.  B  e.  B
2 ssel 3195 . 2  |-  ( A 
C_  B  ->  ( B  e.  A  ->  B  e.  B ) )
31, 2mtoi 666 1  |-  ( A 
C_  B  ->  -.  B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2178    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-sn 3649
This theorem is referenced by:  nntri1  6605  pw1ne3  7376  3nelsucpw1  7380  3nsssucpw1  7382  nninfctlemfo  12476
  Copyright terms: Public domain W3C validator